Skip to main content

Research Repository

Advanced Search

All Outputs (9)

Metal oxides based electrochemical pH sensors: Current progress and future perspectives (2019)
Journal Article
Manjakkal, L., Szwagierczak, D., & Dahiya, R. (2020). Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Progress in Materials Science, 109, Article 100635. https://doi.org/10.1016/j.pmatsci.2019.100635

Electrochemical pH sensors are on high demand in numerous applications such as food processing, health monitoring, agriculture and nuclear sectors, and water quality monitoring etc., owing to their fast response (

Large-Area Soft e-Skin: The Challenges Beyond Sensor Designs (2019)
Journal Article
Dahiya, R., Yogeswaran, N., Liu, F., Manjakkal, L., Burdet, E., Hayward, V., & Jorntell, H. (2019). Large-Area Soft e-Skin: The Challenges Beyond Sensor Designs. Proceedings of the IEEE, 107(10), 2016-2033. https://doi.org/10.1109/jproc.2019.2941366

Sensory feedback from touch is critical for many tasks carried out by robots and humans, such as grasping objects or identifying materials. Electronic skin (e-skin) is a crucial technology for these purposes. Artificial tactile skin that can play the... Read More about Large-Area Soft e-Skin: The Challenges Beyond Sensor Designs.

Triboelectric Nanogenerator With Enhanced Performance via an Optimized Low Permittivity Substrate (2019)
Journal Article
Min, G., Manjakkal, L., Mulvihill, D. M., & Dahiya, R. S. (2020). Triboelectric Nanogenerator With Enhanced Performance via an Optimized Low Permittivity Substrate. IEEE Sensors Journal, 20(13), 6856-6862. https://doi.org/10.1109/jsen.2019.2938605

With electrical power generated from mechanical contact, triboelectric nanogenerators (TENGs) offer a promising route to realizing self-powered sensors. For effective usage, it is important to improve their limited power range (0.1–100 mW/cm 2 ) and... Read More about Triboelectric Nanogenerator With Enhanced Performance via an Optimized Low Permittivity Substrate.

Cloth Based Biocompatiable Temperature Sensor (2019)
Presentation / Conference Contribution
Manjakkal, L., Soni, M., Yogeswaran, N., & Dahiya, R. (2019). Cloth Based Biocompatiable Temperature Sensor. In 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). https://doi.org/10.1109/fleps.2019.8792319

Circular economy focussing on the reuse and recycling of materials is gaining significant interest these days as the concern for environment sustainability is increasing [1] - [3] . In this regard, printed electronics or green electronics is being pr... Read More about Cloth Based Biocompatiable Temperature Sensor.

Printed Temperature Sensor based on Graphene Oxide/PEDOT:PSS (2019)
Presentation / Conference Contribution
Soni, M., Bhattacharjee, M., Manjakkal, L., & Dahiya, R. (2019). Printed Temperature Sensor based on Graphene Oxide/PEDOT:PSS. In 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). https://doi.org/10.1109/fleps.2019

Temperature is an important physical parameter which need to be monitored for various applications ranging from health monitoring to robotics [1] , [2]. In humans, accurate measurement of the variations in the skin temperature is utilized for investi... Read More about Printed Temperature Sensor based on Graphene Oxide/PEDOT:PSS.

Energy autonomous eSkin (2019)
Presentation / Conference Contribution
Manjakkal, L., Nunez, C. G., & Dahiya, R. (2019). Energy autonomous eSkin. In Proceedings SPIE 10982: Micro- and Nanotechnology Sensors, Systems, and Applications XI. https://doi.org/10.1117/12.2520757

The energy autonomy is a critical feature that would enable better portability and longer operation times for wearable systems. In the next generation of prosthesis and robotics, the operation of multiple components (from few sensors to millions of e... Read More about Energy autonomous eSkin.

Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors (2019)
Journal Article
Manjakkal, L., Navaraj, W. T., Núñez, C. G., & Dahiya, R. (2019). Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors. Advanced Science, 6(7), Article 1802251. https://doi.org/10.1002/advs.201802251

Energy autonomy is critical for wearable and portable systems and to this end storage devices with high-energy density are needed. This work presents high-energy density flexible supercapacitors (SCs), showing three times the energy density than simi... Read More about Graphene–Graphite Polyurethane Composite Based High‐Energy Density Flexible Supercapacitors.

Textile-Based Potentiometric Electrochemical pH Sensor for Wearable Applications (2019)
Journal Article
Manjakkal, L., Dang, W., Yogeswaran, N., & Dahiya, R. (2019). Textile-Based Potentiometric Electrochemical pH Sensor for Wearable Applications. Biosensors, 9(1), Article 14. https://doi.org/10.3390/bios9010014

In this work, we present a potentiometric pH sensor on textile substrate for wearable applications. The sensitive (thick film graphite composite) and reference electrodes (Ag/AgCl) are printed on cellulose-polyester blend cloth. An excellent adhesion... Read More about Textile-Based Potentiometric Electrochemical pH Sensor for Wearable Applications.

Energy autonomous electronic skin (2019)
Journal Article
García Núñez, C., Manjakkal, L., & Dahiya, R. (2019). Energy autonomous electronic skin. npj Flexible Electronics, 3(1), Article 1. https://doi.org/10.1038/s41528-018-0045-x

Energy autonomy is key to the next generation portable and wearable systems for several applications. Among these, the electronic-skin or e-skin is currently a matter of intensive investigations due to its wider applicability in areas, ranging from r... Read More about Energy autonomous electronic skin.