Skip to main content

Research Repository

Advanced Search

Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon

Meyer, Friedrich W.; Schubert, Nadine; Diele, Karen; Teichberg, Mirta; Wild, Christian; Enr�quez, Susana

Authors

Friedrich W. Meyer

Nadine Schubert

Mirta Teichberg

Christian Wild

Susana Enr�quez



Contributors

Chaolun Allen Chen
Editor

Abstract

Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future OA scenarios, with important consequences for beach erosion and coastal sediment dynamics.

Journal Article Type Article
Acceptance Date Jul 15, 2016
Online Publication Date Aug 3, 2016
Publication Date Aug 3, 2016
Deposit Date Aug 4, 2016
Publicly Available Date Aug 4, 2016
Journal PLOS ONE
Print ISSN 1932-6203
Electronic ISSN 1932-6203
Publisher Public Library of Science
Peer Reviewed Peer Reviewed
Volume 11
Issue 8
Article Number e0160268
DOI https://doi.org/10.1371/journal.pone.0160268
Keywords Calcification, photosynthesis, Coral reefs, carbonates, algae, reefs, sea water, lagoons,
Public URL http://researchrepository.napier.ac.uk/Output/327142
Contract Date Aug 4, 2016

Files

Effect of inorganic and organic carbon enrichments... (711 Kb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
Copyright: © 2016 Meyer et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.





You might also like



Downloadable Citations