Dr Craig Stevens C.Stevens@napier.ac.uk
Associate Professor
A Germ Line Mutation in the Death Domain of DAPK-1 Inactivates ERK-induced Apoptosis
Stevens, Craig; Lin, Yao; Sanchez, Maria; Amin, Eliana; Copson, Ellen; White, Helen; Durston, Vicky; Eccles, Diana M.; Hupp, Ted
Authors
Yao Lin
Maria Sanchez
Eliana Amin
Ellen Copson
Helen White
Vicky Durston
Diana M. Eccles
Ted Hupp
Abstract
p53 is activated genetically by a set of kinases that are components of the calcium calmodulin kinase superfamily, including CHK2, AMP kinase, and DAPK-1. In dissecting the mechanism of DAPK-1 control, a novel mutation (N1347S) was identified in the death domain of DAPK-1. The N1347S mutation prevented the death domain module binding stably to ERK in vitro and in vivo. Gel filtration demonstrated that the N1347S mutation disrupted the higher order oligomeric nature of the purified recombinant death domain miniprotein. Accordingly, the N1347S death domain module is defective in vivo in the formation of high molecular weight oligomeric intermediates after cross-linking with ethylene glycol bis(succinimidylsuccinate). Full-length DAPK-1 protein harboring a N1347S mutation in the death domain was also defective in binding to ERK in cells and was defective in formation of an ethylene glycol bis(succinimidylsuccinate)-cross-linked intermediate in vivo. Full-length DAPK-1 encoding the N1347S mutation was attenuated in tumor necrosis factor receptor-induced apoptosis. However, the N1347S mutation strikingly prevented ERK:DAPK-1-dependent apoptosis as defined by poly(ADP-ribose) polymerase cleavage, Annexin V staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling imaging. Significant penetrance of the N1347S allele was identified in normal genomic DNA indicating the mutation is germ line, not tumor derived. The frequency observed in genomic DNA was from 37 to 45% for homozygous wild-type, 41 to 47% for heterozygotes, and 12 to 15% for homozygous mutant. These data highlight a naturally occurring DAPK-1 mutation that alters the oligomeric structure of the death domain, de-stabilizes DAPK-1 binding to ERK, and prevents ERK:DAPK-1-dependent apoptosis.
Citation
Stevens, C., Lin, Y., Sanchez, M., Amin, E., Copson, E., White, H., Durston, V., Eccles, D. M., & Hupp, T. (2007). A Germ Line Mutation in the Death Domain of DAPK-1 Inactivates ERK-induced Apoptosis. Journal of Biological Chemistry, 282(18), 13791-13803. https://doi.org/10.1074/jbc.m605649200
Journal Article Type | Article |
---|---|
Online Publication Date | Jan 23, 2007 |
Publication Date | May 4, 2007 |
Deposit Date | Aug 2, 2016 |
Journal | Journal of Biological Chemistry |
Print ISSN | 0021-9258 |
Electronic ISSN | 1083-351X |
Publisher | American Society for Biochemistry and Molecular Biology |
Peer Reviewed | Peer Reviewed |
Volume | 282 |
Issue | 18 |
Pages | 13791-13803 |
DOI | https://doi.org/10.1074/jbc.m605649200 |
Keywords | Cell Biology; Biochemistry; Molecular Biology |
Public URL | http://researchrepository.napier.ac.uk/Output/322298 |
You might also like
Evolution and immunopathology of chikungunya virus informs therapeutic development
(2023)
Journal Article
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)
(2021)
Journal Article
Models of osteoarthritis: relevance and new insights
(2020)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search