Neda Azouji
EfficientMask-Net for face authentication in the era of COVID-19 pandemic
Azouji, Neda; Sami, Ashkan; Taheri, Mohammad
Abstract
Today, we are facing the COVID-19 pandemic. Accordingly, properly wearing face masks has become vital as an effective way to prevent the rapid spread of COVID-19. This research develops an Efficient Mask-Net method for low-power devices, such as mobile and embedding models with low-memory requirements. The method identifies face mask-wearing conditions in two different schemes: I. Correctly Face Mask (CFM), Incorrectly Face Mask (IFM), and Not Face Mask (NFM) wearing; II. Uncovered Chin IFM, Uncovered Nose IFM, and Uncovered Nose and Mouth IFM. The proposed method can also be helpful to unmask the face for face authentication based on unconstrained 2D facial images in the wild. In this study, deep convolutional neural networks (CNNs) were employed as feature extractors. Then, deep features were fed to a recently proposed large margin piecewise linear (LMPL) classifier. In the experimental study, lightweight and very powerful mobile implementation of CNN models were evaluated, where the novel “EffientNetb0” deep feature extractor with LMPL classifier outperformed well-known end-to-end CNN models, as well as conventional image classification methods. It achieved high accuracies of 99.53 and 99.64% in fulfilling the two mentioned tasks, respectively.
Citation
Azouji, N., Sami, A., & Taheri, M. (2022). EfficientMask-Net for face authentication in the era of COVID-19 pandemic. Signal, Image and Video Processing, 16(7), 1991-1999. https://doi.org/10.1007/s11760-022-02160-z
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 21, 2022 |
Online Publication Date | Apr 21, 2022 |
Publication Date | 2022-10 |
Deposit Date | Apr 30, 2023 |
Journal | Signal, Image and Video Processing |
Print ISSN | 1863-1703 |
Electronic ISSN | 1863-1711 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 16 |
Issue | 7 |
Pages | 1991-1999 |
DOI | https://doi.org/10.1007/s11760-022-02160-z |
Keywords | COVID-19, EfficientNet, Face mask-wearing, Face authentication, Large margin classifier, Deep feature extraction |
Publisher URL | https://link.springer.com/article/10.1007/s11760-022-02160-z#rightslink |
Additional Information | Free to read: This content has been made available to all. |
You might also like
Reputation Gaming in Crowd Technical Knowledge Sharing
(2024)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search