Leigh Turnbull L.Turnbull@napier.ac.uk
Student Experience
A Generative Neural Network for Enhancing Android Metamorphic Malware Detection based on Behaviour Profiling
Turnbull, Leigh; Tan, Zhiyuan; Babaagba, Kehinde
Authors
Dr Thomas Tan Z.Tan@napier.ac.uk
Associate Professor
Dr Kehinde Babaagba K.Babaagba@napier.ac.uk
Lecturer
Abstract
Malicious software trends show a persistent yearly increase in volume and cost impact. More than 350,000 new malicious or unwanted programs that target various technologies were registered daily over the past year. Metamorphic malware is a specifically dangerous group of malicious software that perturbs its structure between generations. Detecting these types of malware, thus, appear to be more challenging. Recent research demonstrates that Machine Learning (ML) techniques outperform traditional methods in detecting known and uncategorised malware variants. Hence, this research aims to investigate the use of ML, a Generative Neural Network specifically, for enhancing metamorphic malware detection in Android (the most popular mobile operating system) via augmenting training data. The results show the augmented training data, containing novel samples derived from Deep Convolutional Generative Adversarial Network (DCGAN) and features from metamorphic malware samples, improves the detection performance of unseen metamorphic malware.
Citation
Turnbull, L., Tan, Z., & Babaagba, K. (2022). A Generative Neural Network for Enhancing Android Metamorphic Malware Detection based on Behaviour Profiling. In 2022 IEEE Conference on Dependable and Secure Computing (DSC). https://doi.org/10.1109/DSC54232.2022.9888906
Conference Name | The 2022 5th IEEE Conference on Dependable and Secure Computing (IEEE DSC 2022) |
---|---|
Conference Location | Edinburgh [Online] |
Start Date | Jun 22, 2022 |
End Date | Jun 24, 2022 |
Acceptance Date | May 3, 2022 |
Online Publication Date | Sep 26, 2022 |
Publication Date | 2022 |
Deposit Date | May 25, 2022 |
Publisher | Institute of Electrical and Electronics Engineers |
Book Title | 2022 IEEE Conference on Dependable and Secure Computing (DSC) |
DOI | https://doi.org/10.1109/DSC54232.2022.9888906 |
Keywords | Malicious Software, Metamorphic Malware, Machine Learning, Neural Network, Behaviour Profiling. |
Public URL | http://researchrepository.napier.ac.uk/Output/2874008 |
You might also like
A Study on the Effect of Feature Selection on Malware Analysis using Machine Learning
(2019)
Conference Proceeding
Toward Machine Intelligence that Learns to Fingerprint Polymorphic Worms in IoT
(2022)
Journal Article