Honghao Gao
Special Issue on Adversarial AI to IoT Security and Privacy Protection: Attacks and Defenses
Gao, Honghao; Tan, Zhiyuan
Abstract
The prosperity of social IoT data brings revolutionary changes to our daily lives and greatly increases the existing data volume. But IoT data are vulnerable due to security and privacy issues. Over the past few years, malicious adversaries exploited various vulnerabilities of AI algorithms and thus compromised the security of AI systems. For example, obfuscating malware code within benign programs or applications to fool the AI-based intrusion detection systems. Thus, applying adversarial AI is supposed to be one of the most useful methods to protect IoT data, including big data mining and analysis, information diffusion, sentiment analysis and opinion mining, social event detection, trend prediction and influence maximization. This special issue brings together leading researchers and developers presenting their latest research and 10 high-quality papers are selected. A summary of these accepted papers is outlined below.
In the paper entitled ‘AWFC: Preventing Label Flipping Attacks towards Federated Learning for Intelligent IoT’ by Zhuo Lv et al., the authors are motivated to prevent label flipping poisoning attacks by observing the changes in model parameters that were trained by different single labels. They propose a novel detection method, called AWFC, that label flipping attacks are detected by identifying the differences of classes in the data. The weight assignments in a fully connected layer of the neural network model are used and the statistical algorithm is applied to find the malicious clients. The experiments are conducted on benchmark data, such as Fashion-MNIST and Intrusion Detection Evaluation Dataset (CIC-IDS2017), where results demonstrate that the method’s detection accuracy is better.
Citation
Gao, H., & Tan, Z. (2022). Special Issue on Adversarial AI to IoT Security and Privacy Protection: Attacks and Defenses. Computer Journal, 65(11), 2847-2848. https://doi.org/10.1093/comjnl/bxac128
Journal Article Type | Article |
---|---|
Online Publication Date | Sep 30, 2022 |
Publication Date | 2022-11 |
Deposit Date | Dec 16, 2022 |
Journal | The Computer Journal |
Print ISSN | 0010-4620 |
Electronic ISSN | 1460-2067 |
Publisher | Oxford University Press |
Peer Reviewed | Not Peer Reviewed |
Volume | 65 |
Issue | 11 |
Pages | 2847-2848 |
DOI | https://doi.org/10.1093/comjnl/bxac128 |
Public URL | http://researchrepository.napier.ac.uk/Output/2929019 |
You might also like
Detection of Ransomware
(2024)
Patent
Machine Un-learning: An Overview of Techniques, Applications, and Future Directions
(2023)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search