Skip to main content

Research Repository

Advanced Search

A novel automated louver with parametrically-angled reflective slats; design evaluation for better practicality and daylighting uniformity

Eltaweel, Ahmad; Su, Yuehong; Mandour, M. Alaa; Elrawy, Omar O.


Yuehong Su

M. Alaa Mandour

Omar O. Elrawy


Daylighting harvest systems have been improved in recent decades. They have been dramatically used in green buildings to achieve a more sustainable living environment. However, their cost, sizes, shapes, materials, accuracy and control methods are considered as critical aspects towards their feasibility and practicality. The optimal integration between these aspects can achieve more reliable and practical daylight harvest systems. Grasshopper, as a parametric control method, can be exploited in such systems to optimise the use of each aspect. Parametric approach is considered as the most convenient way to control and manipulate different parameters simultaneously, with respond to the sun movement. This study investigates a parametrically controlled daylighting louver system, which can respond to the sun movement to collect as much daylight as possible inside the deep room, via using parametrically-angled reflective slats. To consider our main purpose of feasibility and performance, the study will evaluate the performance of the proposed system by changing its slats' size and shape to achieve optimum balance between practicality and performance. The study found that reducing the louver size and modifying the slat's curvature, can significantly increase the daylight coverage percentage inside the deep room from 93% to 98% within the illuminance standard range 300–500 lx, in addition to reducing the glare probability to an imperceptible level, besides achieving lighter weight and better strength-limber shape.

Journal Article Type Article
Acceptance Date Mar 19, 2021
Online Publication Date Apr 17, 2021
Publication Date 2021-10
Deposit Date Feb 7, 2022
Journal Journal of Building Engineering
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 42
Article Number 102438
Public URL