Skip to main content

Research Repository

Advanced Search

Estimation of component contributions to total terrestrial water storage change in the Yangtze River basin

Chao, Nengfang; Jin, Taoyong; Cai, Zuansi; Chen, Gang; Liu, Xianglin; Wang, Zhengtao

Authors

Nengfang Chao

Taoyong Jin

Gang Chen

Xianglin Liu

Zhengtao Wang



Abstract

Terrestrial water storage (TWS) is a key variable in global and regional hydrological cycles. In this study, the TWS changes in the Yangtze River Basin (YRB) were derived using the Lagrange multiplier method (LMM) from Gravity Recovery and Climate Experiment (GRACE) data. To assess TWS changes from LMM, different GRACE solutions, different hydrological models, and in situ data were used for validation. Results show that TWS changes from LMM in YRB has the best performance with the correlation coefficients of 0.80 and root mean square error of 1.48 cm in comparison with in situ data. The trend of TWS changes over the YRB increased by 10.39 ± 1.27 Gt yr-1 during the 2003−2015 period. Moreover, TWS change is disintegrated into the individual contributions of hydrological components (i.e., glaciers, surface water, soil moisture, and groundwater) from satellite data, hydrologic models, and in situ data. The estimated changes in individual TWS components in the YRB show that (1) the contribution of glaciers, surface water, soil moisture, and groundwater to total TWS changes is 15%, 12%, 25% and 48%, respectively; (2) Geladandong glacier melt from CryoSat-2/ICESat data has a critical effect on TWS changes with a correlation coefficients of −0.51; (3) the Three Gorges Reservoir Impoundment has a minimal effect on surface water changes (mainly lake water storage), but it has a substantial effect on groundwater storage (GWS), (4) the Poyang and Doting Lake water storage changes are mainly caused by climate change, (5) soil moisture storage change is mainly influenced by surface water, (6) human-induced GWS changes accounted for approximately half of the total GWS. The results of this study can provide valuable information for decision-making in water resources management.

Journal Article Type Article
Acceptance Date Oct 14, 2020
Online Publication Date Oct 20, 2020
Publication Date 2021-04
Deposit Date Oct 27, 2020
Publicly Available Date Oct 21, 2021
Journal Journal of Hydrology
Print ISSN 0022-1694
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 595
Article Number 125661
DOI https://doi.org/10.1016/j.jhydrol.2020.125661
Keywords Terrestrial water storage change, Groundwater, Yangtze River basin, GRACE, CryoSat-2/ICESat
Public URL http://researchrepository.napier.ac.uk/Output/2695979

Files

Estimation Of Component Contributions To Total Terrestrial Water Storage Change In The Yangtze River Basin (accepted version) (2.4 Mb)
PDF

Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/

Copyright Statement
This accepted version is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.




You might also like



Downloadable Citations