Skip to main content

Research Repository

Advanced Search

Outputs (29)

An innovative approach for the passive cooling of batteries: An empirical investigation of copper deposition on polyurethane foam for the enhancement of phase change material (2024)
Journal Article
Alcock, K. M., Shearer, N., Santos, F. V., Cai, Z., & Goh, K. (2024). An innovative approach for the passive cooling of batteries: An empirical investigation of copper deposition on polyurethane foam for the enhancement of phase change material. Applied Materials Today, 38, Article 102221. https://doi.org/10.1016/j.apmt.2024.102221

A proof-of-concept utilising Copper-Plated Polyurethane Foam (CPPF) and Phase Change Material (PCM) for passive thermal management of lithium-ion batteries is demonstrated in this study. The aim of this research is to assess the effectiveness of CPPF... Read More about An innovative approach for the passive cooling of batteries: An empirical investigation of copper deposition on polyurethane foam for the enhancement of phase change material.

The Influence of ENSO on the Long‐Term Water Storage Anomalies in the Middle‐Lower Reaches of the Yangtze River Basin: Evaluation and Analysis (2023)
Journal Article
Li, X., Jin, T., Liu, B., Chao, N., Li, F., & Cai, Z. (2023). The Influence of ENSO on the Long‐Term Water Storage Anomalies in the Middle‐Lower Reaches of the Yangtze River Basin: Evaluation and Analysis. Earth and Space Science, 10(10), Article e2023EA003007. https://doi.org/10.1029/2023ea003007

Recent extreme events in the Middle‐Lower reaches of the Yangtze River basin (MLYRB) are proven to be possibly linked to the El Niño‐Southern Oscillation (ENSO) events as indicated by terrestrial water storage anomaly (TWSA). But the relatively short... Read More about The Influence of ENSO on the Long‐Term Water Storage Anomalies in the Middle‐Lower Reaches of the Yangtze River Basin: Evaluation and Analysis.

Individual Cell-Level Temperature Monitoring of a Lithium-Ion Battery Pack (2023)
Journal Article
Alcock, K. M., González-Vila, Á., Beg, M., Vedreño-Santos, F., Cai, Z., Alwis, L. S. M., & Goh, K. (2023). Individual Cell-Level Temperature Monitoring of a Lithium-Ion Battery Pack. Sensors, 23(9), Article 4306. https://doi.org/10.3390/s23094306

The work described herein details the deployment of an optical fibre strand with five fibre Bragg grating (FBG) sensors for individual cell-level temperature monitoring of a three-cell lithium-ion battery pack. A polymer guide tube with 3D printed pl... Read More about Individual Cell-Level Temperature Monitoring of a Lithium-Ion Battery Pack.

Development of a Novel Simulator for Modelling Underground Hydrogen and Gas Mixture Storage (2022)
Journal Article
Cai, Z., Zhang, K., & Guo, C. (2022). Development of a Novel Simulator for Modelling Underground Hydrogen and Gas Mixture Storage. International Journal of Hydrogen Energy, 47(14), 8929-8942. https://doi.org/10.1016/j.ijhydene.2021.12.224

Underground hydrogen storage can store grid-scale energy for balancing both short-term and long-term inter-seasonal supply and demand. However, there is no numerical simulator which is dedicated to the design and optimisation of such energy storage t... Read More about Development of a Novel Simulator for Modelling Underground Hydrogen and Gas Mixture Storage.

Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance (2021)
Journal Article
Fjelkestam Frederiksen, C. A., & Cai, Z. (2022). Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance. Applied Energy, 306, Article 118152. https://doi.org/10.1016/j.apenergy.2021.118152

• Extra-terrestrial Solar Irradiance has been validated for PV output forecasting. • The machine learning approach successfully captures huge intra-daily PV output variations. • Study paves the way to develop a simple and effective PV output forecast... Read More about Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance.

Utility-scale Subsurface Hydrogen Storage: UK Perspectives and Technology (2021)
Journal Article
Wallace, R. L., Cai, Z., Zhang, H., Zhang, K., & Guo, C. (2021). Utility-scale Subsurface Hydrogen Storage: UK Perspectives and Technology. International Journal of Hydrogen Energy, 46(49), 25137-25159. https://doi.org/10.1016/j.ijhydene.2021.05.034

To reduce effects from anthropogenically induced climate change renewable energy systems are being implemented at an accelerated rate, the UKs wind capacity alone is set to more than double by 2030. However, the intermittency associated with these sy... Read More about Utility-scale Subsurface Hydrogen Storage: UK Perspectives and Technology.

Analysis of the Polypropylene-Based Aluminium-Air Battery (2021)
Journal Article
Tan, W. C., Saw, L. H., Yew, M. C., Sun, D., Cai, Z., Chong, W. T., & Kuo, P. (2021). Analysis of the Polypropylene-Based Aluminium-Air Battery. Frontiers in Energy Research, 9, Article 599846. https://doi.org/10.3389/fenrg.2021.599846

Global energy demand is rising due to the rapid development and adoption of new technologies in every sector. Hence, there is a need to introduce a clean energy source that does not cause damage to the environment. Aluminium-air battery with its high... Read More about Analysis of the Polypropylene-Based Aluminium-Air Battery.

The promise and challenges of utility-scale compressed air energy storage in aquifers (2021)
Journal Article
Guo, C., Li, C., Zhang, K., Cai, Z., Ma, T., Maggi, F., …Shen, L. (2021). The promise and challenges of utility-scale compressed air energy storage in aquifers. Applied Energy, 286, Article 116513. https://doi.org/10.1016/j.apenergy.2021.116513

Widely distributed aquifers have been proposed as effective storage reservoirs for compressed air energy storage (CAES). This aims to overcome the limitations of geological conditions for conventional utility-scale CAES, which has to date used cavern... Read More about The promise and challenges of utility-scale compressed air energy storage in aquifers.

Estimation of component contributions to total terrestrial water storage change in the Yangtze River basin (2020)
Journal Article
Chao, N., Jin, T., Cai, Z., Chen, G., Liu, X., & Wang, Z. (2021). Estimation of component contributions to total terrestrial water storage change in the Yangtze River basin. Journal of Hydrology, 595, Article 125661. https://doi.org/10.1016/j.jhydrol.2020.125661

Terrestrial water storage (TWS) is a key variable in global and regional hydrological cycles. In this study, the TWS changes in the Yangtze River Basin (YRB) were derived using the Lagrange multiplier method (LMM) from Gravity Recovery and Climate Ex... Read More about Estimation of component contributions to total terrestrial water storage change in the Yangtze River basin.

Numerical investigation of cycle performance in compressed air energy storage in aquifers (2020)
Journal Article
Yang, L., Cai, Z., Li, C., He, Q., Ma, Y., & Guo, C. (2020). Numerical investigation of cycle performance in compressed air energy storage in aquifers. Applied Energy, 269, https://doi.org/10.1016/j.apenergy.2020.115044

Compressed air energy storage (CAES) is one of the promising technologies to store the renewable energies such as surplus solar and wind energy in a grid scale. Due to the widespread of aquifers in the world, the compressed air energy storage in aqui... Read More about Numerical investigation of cycle performance in compressed air energy storage in aquifers.