Skip to main content

Research Repository

Advanced Search

Outputs (6)

Can Federated Models Be Rectified Through Learning Negative Gradients? (2024)
Presentation / Conference Contribution
Tahir, A., Tan, Z., & Babaagba, K. O. Can Federated Models Be Rectified Through Learning Negative Gradients?. Presented at 13th EAI International Conference, BDTA 2023, Edinburgh

Federated Learning (FL) is a method to train machine learning (ML) models in a decentralised manner, while preserving the privacy of data from multiple clients. However, FL is vulnerable to malicious attacks, such as poisoning attacks, and is challen... Read More about Can Federated Models Be Rectified Through Learning Negative Gradients?.

Challenges and Considerations in Data Recovery from Solid State Media: A Comparative Analysis with Traditional Devices (2023)
Presentation / Conference Contribution
Spalding, A., Tan, Z., & Babaagba, K. O. (2023, November). Challenges and Considerations in Data Recovery from Solid State Media: A Comparative Analysis with Traditional Devices. Presented at The International Symposium on Intelligent and Trustworthy Computing, Communications, and Networking (ITCCN-2023), Exeter, UK

Data recovery for forensic analysis of both hard drives and solid state media presents its own unique set of challenges. Hard drives face mechanical failures and data fragmentation , but their sequential storage and higher success rates make recovery... Read More about Challenges and Considerations in Data Recovery from Solid State Media: A Comparative Analysis with Traditional Devices.

Toward Machine Intelligence that Learns to Fingerprint Polymorphic Worms in IoT (2022)
Journal Article
Wang, F., Yang, S., Wang, C., Li, Q., Babaagba, K., & Tan, Z. (2022). Toward Machine Intelligence that Learns to Fingerprint Polymorphic Worms in IoT. International Journal of Intelligent Systems, 37(10), 7058-7078. https://doi.org/10.1002/int.22871

Internet of Things (IoT) is fast growing. Non-PC devices under the umbrella of IoT have been increasingly applied in various fields and will soon account for a significant share of total Internet traffic. However, the security and privacy of IoT and... Read More about Toward Machine Intelligence that Learns to Fingerprint Polymorphic Worms in IoT.

Improving Classification of Metamorphic Malware by Augmenting Training Data with a Diverse Set of Evolved Mutant Samples (2020)
Presentation / Conference Contribution
Babaagba, K., Tan, Z., & Hart, E. (2020, July). Improving Classification of Metamorphic Malware by Augmenting Training Data with a Diverse Set of Evolved Mutant Samples. Presented at The 2020 IEEE Congress on Evolutionary Computation (IEEE CEC 2020), Glasgow, UK

Detecting metamorphic malware provides a challenge to machine-learning models as trained models might not generalise to future mutant variants of the malware. To address this, we explore whether machine-learning models can be improved by augmenting t... Read More about Improving Classification of Metamorphic Malware by Augmenting Training Data with a Diverse Set of Evolved Mutant Samples.

Automatic Generation of Adversarial Metamorphic Malware Using MAP-Elites (2020)
Presentation / Conference Contribution
Babaagba, K. O., Tan, Z., & Hart, E. (2020, April). Automatic Generation of Adversarial Metamorphic Malware Using MAP-Elites. Presented at EvoStar 2020, Seville, Spain

In the field of metamorphic malware detection, training a detection model with malware samples that reflect potential mutants of the malware is crucial in developing a model resistant to future attacks. In this paper, we use a Multi-dimensional Archi... Read More about Automatic Generation of Adversarial Metamorphic Malware Using MAP-Elites.

Nowhere Metamorphic Malware Can Hide - A Biological Evolution Inspired Detection Scheme (2019)
Presentation / Conference Contribution
Babaagba, K. O., Tan, Z., & Hart, E. (2019, November). Nowhere Metamorphic Malware Can Hide - A Biological Evolution Inspired Detection Scheme. Presented at The 5th International Conference on Dependability in Sensor, Cloud, and Big Data Systems and Applications (DependSys 2019), Guangzhou, China

The ability to detect metamorphic malware has generated significant research interest over recent years, particularly given its proliferation on mobile devices. Such malware is particularly hard to detect via signature-based intrusion detection syste... Read More about Nowhere Metamorphic Malware Can Hide - A Biological Evolution Inspired Detection Scheme.