Skip to main content

Research Repository

Advanced Search

Outputs (156)

Privacy Preserving Demand Forecasting to Encourage Consumer Acceptance of Smart Energy Meters (2020)
Presentation / Conference Contribution
Briggs, C., Fan, Z., & Andras, P. (2020, December). Privacy Preserving Demand Forecasting to Encourage Consumer Acceptance of Smart Energy Meters. Presented at NeurIPS 2020 Workshop: Tackling Climate Change with Machine Learning, Online

In this proposal paper we highlight the need for privacy preserving energy demand forecasting to allay a major concern consumers have about smart meter installations. High resolution smart meter data can expose many private aspects of a consumer’s ho... Read More about Privacy Preserving Demand Forecasting to Encourage Consumer Acceptance of Smart Energy Meters.

The fractal geometry of fitness landscapes at the local optima level (2020)
Journal Article
Thomson, S. L., Ochoa, G., & Verel, S. (2022). The fractal geometry of fitness landscapes at the local optima level. Natural Computing, 21(2), 317-333. https://doi.org/10.1007/s11047-020-09834-y

A local optima network (LON) encodes local optima connectivity in the fitness landscape of a combinatorial optimisation problem. Recently, LONs have been studied for their fractal dimension. Fractal dimension is a complexity index where a non-integer... Read More about The fractal geometry of fitness landscapes at the local optima level.

Inferring Future Landscapes: Sampling the Local Optima Level (2020)
Journal Article
Thomson, S. L., Ochoa, G., Verel, S., & Veerapen, N. (2020). Inferring Future Landscapes: Sampling the Local Optima Level. Evolutionary Computation, 28(4), 621-641. https://doi.org/10.1162/evco_a_00271

Connection patterns among Local Optima Networks (LONs) can inform heuristic design for optimisation. LON research has predominantly required complete enumeration of a fitness landscape, thereby restricting analysis to problems diminutive in size comp... Read More about Inferring Future Landscapes: Sampling the Local Optima Level.

Federated learning with hierarchical clustering of local updates to improve training on non-IID data (2020)
Presentation / Conference Contribution
Briggs, C., Fan, Z., & Andras, P. (2020, July). Federated learning with hierarchical clustering of local updates to improve training on non-IID data. Presented at 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow

Federated learning (FL) is a well established method for performing machine learning tasks over massively distributed data. However in settings where data is distributed in a non-iid (not independent and identically distributed) fashion - as is typic... Read More about Federated learning with hierarchical clustering of local updates to improve training on non-IID data.

Composition of Games as a Model for the Evolution of Social Institutions (2020)
Presentation / Conference Contribution
Andras, P. (2020, July). Composition of Games as a Model for the Evolution of Social Institutions. Presented at ALIFE 2020: The 2020 Conference on Artificial Life, Online

The evolution of social institutions (e.g. institutions of political decision making or joint resource administration) is an important question in the context of understanding of how societies develop and evolve. In principle, social institutions can... Read More about Composition of Games as a Model for the Evolution of Social Institutions.

The Local Optima Level in Chemotherapy Schedule Optimisation (2020)
Presentation / Conference Contribution
Thomson, S. L., & Ochoa, G. (2020, April). The Local Optima Level in Chemotherapy Schedule Optimisation. Presented at EvoCOP 2020: Evolutionary Computation in Combinatorial Optimization, Seville, Spain

In this paper a multi-drug Chemotherapy Schedule Optimisation Problem (CSOP) is subject to Local Optima Network (LON) analysis. LONs capture global patterns in fitness landscapes. CSOPs have not previously been subject to fitness landscape analysis.... Read More about The Local Optima Level in Chemotherapy Schedule Optimisation.

Scalability analysis comparisons of cloud-based software services (2019)
Journal Article
Ahmad, A. A.-S., & Andras, P. (2019). Scalability analysis comparisons of cloud-based software services. Journal of cloud computing: advances, systems and applications, 8, Article 10. https://doi.org/10.1186/s13677-019-0134-y

Performance and scalability testing and measurements of cloud-based software services are necessary for future optimizations and growth of cloud computing. Scalability, elasticity, and efficiency are interrelated aspects of cloud-based software servi... Read More about Scalability analysis comparisons of cloud-based software services.

Environmental Harshness and Fitness Improving Innovations (2019)
Presentation / Conference Contribution
Andras, P. (2019, July). Environmental Harshness and Fitness Improving Innovations. Presented at ALIFE 2019: The 2019 Conference on Artificial Life, Newcastle-upon-Tyne

Fitness improving innovations occur in populations of organisms as genetic changes (mutations) that allow better fit with the environmental niche of the organisms. Similarly, fitness improving innovations may occur in the context of human communities... Read More about Environmental Harshness and Fitness Improving Innovations.

Cloud-based software services delivery from the perspective of scalability (2019)
Journal Article
Al-Said Ahmad, A., & Andras, P. (2021). Cloud-based software services delivery from the perspective of scalability. International Journal of Parallel, Emergent and Distributed Systems, 36(2), 53-68. https://doi.org/10.1080/17445760.2019.1617864

Measuring and testing the scalability and performance of cloud-based software services is critical for the delivery of such services, and the development of cloud computing. There are three interconnected Cloud-based software services’ performance as... Read More about Cloud-based software services delivery from the perspective of scalability.

The use of bibliography enriched features for automatic citation screening (2019)
Journal Article
Olorisade, B. K., Brereton, P., & Andras, P. (2019). The use of bibliography enriched features for automatic citation screening. Journal of Biomedical Informatics, 94, Article 103202. https://doi.org/10.1016/j.jbi.2019.103202

Context
Citation screening (also called study selection) is a phase of systematic review process that has attracted a growing interest on the use of text mining (TM) methods to support it to reduce time and effort. Search results are usually imbalan... Read More about The use of bibliography enriched features for automatic citation screening.

Swarm intelligence techniques in recommender systems - A review of recent research (2019)
Journal Article
Peška, L., Tashu, T. M., & Horváth, T. (2019). Swarm intelligence techniques in recommender systems - A review of recent research. Swarm and Evolutionary Computation, 48, 201-219. https://doi.org/10.1016/j.swevo.2019.04.003

One of the main current applications of Intelligent Systems are Recommender systems (RS). RS can help users to find relevant items in huge information spaces in a personalized way. Several techniques have been investigated for the development of RS.... Read More about Swarm intelligence techniques in recommender systems - A review of recent research.

Clarifying the Difference in Local Optima Network Sampling Algorithms (2019)
Presentation / Conference Contribution
Thomson, S. L., Ochoa, G., & Verel, S. (2019, April). Clarifying the Difference in Local Optima Network Sampling Algorithms. Presented at 19th European Conference, EvoCOP 2019, Leipzig, Germany

We conduct the first ever statistical comparison between two Local Optima Network (LON) sampling algorithms. These methodologies attempt to capture the connectivity in the local optima space of a fitness landscape. One sampling algorithm is based on... Read More about Clarifying the Difference in Local Optima Network Sampling Algorithms.

User perception of Bitcoin usability and security across novice users (2019)
Journal Article
Alshamsi, A., & Andras, P. (2019). User perception of Bitcoin usability and security across novice users. International Journal of Human-Computer Studies, 126, 94-110. https://doi.org/10.1016/j.ijhcs.2019.02.004

This paper investigates users’ perceptions and experiences of an anonymous digital payment system (Bitcoin) and its influence on users in terms of usability and security in comparison to other non-anonymous payment systems such as credit/debit cards.... Read More about User perception of Bitcoin usability and security across novice users.

Measuring and testing the scalability of cloud-based software services (2019)
Presentation / Conference Contribution
Al-Said Ahmad, A., & Andras, P. (2018, October). Measuring and testing the scalability of cloud-based software services. Presented at 2018 Fifth International Symposium on Innovation in Information and Communication Technology (ISIICT), Amman, Jordan

Performance and scalability testing and measurements of cloud-based software services are critically important in the context of rapid growth of cloud computing and supporting the delivery of these services. Cloud-based software services performance... Read More about Measuring and testing the scalability of cloud-based software services.

Cooperation in Repeated Rock-Paper-Scissors Games in Uncertain Environments (2018)
Presentation / Conference Contribution
Andras, P. (2018, July). Cooperation in Repeated Rock-Paper-Scissors Games in Uncertain Environments. Presented at ALIFE 2018: The 2018 Conference on Artificial Life, Tokyo, Japan

Cooperation among selfish individuals provides the fundamentals for social organization among animals and humans. Cooperation games capture this behavior at an abstract level and provide the tools for the analysis of the evolution of cooperation. Her... Read More about Cooperation in Repeated Rock-Paper-Scissors Games in Uncertain Environments.

Random projection neural network approximation (2018)
Presentation / Conference Contribution
Andras, P. (2018, July). Random projection neural network approximation. Presented at 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil

Neural networks are often used to approximate functions defined over high-dimensional data spaces (e.g. text data, genomic data, multi-sensor data). Such approximation tasks are usually difficult due to the curse of dimensionality and improved method... Read More about Random projection neural network approximation.

New Trends in Databases and Information Systems: ADBIS 2018 Short Papers and Workshops, AI*QA, BIGPMED, CSACDB, M2U, BigDataMAPS, ISTREND, DC, Budapest, Hungary, September, 2-5, 2018, Proceedings (2018)
Presentation / Conference Contribution
(2018, September). New Trends in Databases and Information Systems: ADBIS 2018 Short Papers and Workshops, AI*QA, BIGPMED, CSACDB, M2U, BigDataMAPS, ISTREND, DC, Budapest, Hungary, September, 2-5, 2018, Proceedings. Presented at 22th European Conference on Advances in Databases and Information Systems, ADBIS 2018, Budapest, Hungary

Multifractality and dimensional determinism in local optima networks (2018)
Presentation / Conference Contribution
Thomson, S. L., Verel, S., Ochoa, G., Veerapen, N., & Cairns, D. (2018, July). Multifractality and dimensional determinism in local optima networks. Presented at GECCO '18: Genetic and Evolutionary Computation Conference, Kyoto, Japan

We conduct a study of local optima networks (LONs) in a search space using fractal dimensions. The fractal dimension (FD) of these networks is a complexity index which assigns a non-integer dimension to an object. We propose a fine-grained approach t... Read More about Multifractality and dimensional determinism in local optima networks.