Structured Teaching Prompt Articulation for Generative-AI Role Embodiment with Augmented Mirror Video Displays
(2024)
Presentation / Conference Contribution
Casas, L., & Mitchell, K. (2024, December). Structured Teaching Prompt Articulation for Generative-AI Role Embodiment with Augmented Mirror Video Displays. Presented at VRCAI '24: The 19th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, Nanjing, China
Outputs (320)
DeFT-Net: Dual-Window Extended Frequency Transformer for Rhythmic Motion Prediction (2024)
Presentation / Conference Contribution
Ademola, A., Sinclair, D., Koniaris, B., Hannah, S., & Mitchell, K. (2024, September). DeFT-Net: Dual-Window Extended Frequency Transformer for Rhythmic Motion Prediction. Presented at EG UK Computer Graphics & Visual Computing (2024), London, UKEnabling online virtual reality (VR) users to dance and move in a way that mirrors the real-world necessitates improvements in the accuracy of predicting human motion sequences paving way for an immersive and connected experience. However, the drawba... Read More about DeFT-Net: Dual-Window Extended Frequency Transformer for Rhythmic Motion Prediction.
DanceMark: An open telemetry framework for latency sensitive real-time networked immersive experiences (2024)
Presentation / Conference Contribution
Koniaris, B., Sinclair, D., & Mitchell, K. (2024, March). DanceMark: An open telemetry framework for latency sensitive real-time networked immersive experiences. Presented at IEEE VR Workshop on Open Access Tools and Libraries for Virtual Reality, Orlando, FLDanceMark is an open telemetry framework designed for latency-sensitive real-time networked immersive experiences, focusing on online dancing in virtual reality within the DanceGraph platform. The goal is to minimize end-to-end latency and enhance us... Read More about DanceMark: An open telemetry framework for latency sensitive real-time networked immersive experiences.
Responsible Design & Evaluation of a Conversational Agent for a National Careers Service (2023)
Presentation / Conference Contribution
Wilson, M., Cruickshank, P., Gkatzia, D., & Robertson, P. (2023, September). Responsible Design & Evaluation of a Conversational Agent for a National Careers Service. Presented at Symposium on Future Directions in Information Access (FDIA) 2023, Vienna, AustriaThis PhD project applies a research-through-design approach to the development of a conversational agent for a national career service for young people. This includes addressing practical, interactional and ethical aspects of the system. For each asp... Read More about Responsible Design & Evaluation of a Conversational Agent for a National Careers Service.
DanceGraph: A Complementary Architecture for Synchronous Dancing Online (2023)
Presentation / Conference Contribution
Sinclair, D., Ademola, A. V., Koniaris, B., & Mitchell, K. (2023, May). DanceGraph: A Complementary Architecture for Synchronous Dancing Online. Presented at 36th International Computer Animation & Social Agents (CASA) 2023, Limassol, CyprusDanceGraph is an architecture for synchronized online dancing overcoming the latency of net-worked body pose sharing. We break down this challenge by developing a real-time bandwidth-efficient architecture to minimize lag and reduce the timeframe of... Read More about DanceGraph: A Complementary Architecture for Synchronous Dancing Online.
Combining Word Embedding Interactions and LETOR Feature Evidences for Supervised QPP (2023)
Presentation / Conference Contribution
Datta, S., Ganguly, D., Mothe, J., & Ullah, M. Z. (2023, April). Combining Word Embedding Interactions and LETOR Feature Evidences for Supervised QPP. Presented at 45th European Conference on Information Retrieval (ECIR), Dublin, IrelandIn information retrieval, query performance prediction aims to predict whether a search engine is likely to succeed in retrieving potentially relevant documents to a user's query. This problem is usually cast into a regression problem where a machine... Read More about Combining Word Embedding Interactions and LETOR Feature Evidences for Supervised QPP.
PFL-LDG: Privacy-preserving Federated Learning via Lightweight Device Grouping (2023)
Presentation / Conference Contribution
Wang, Z., Liu, Q., & Liu, X. (2023, August). PFL-LDG: Privacy-preserving Federated Learning via Lightweight Device Grouping. Presented at The 9th IEEE International Conference on Privacy Computing and Data Security (PCDS 2023) as Part of the IEEE Smart World Congress 2023, Portsmouth, UKThe rapid growth of private data from distributed edge networks, driven by the proliferation of IoT sensors, wearable devices, and smartphones, offers significant opportunities for AI applications. However, traditional distributed machine learning me... Read More about PFL-LDG: Privacy-preserving Federated Learning via Lightweight Device Grouping.
Real-time Facial Animation for 3D Stylized Character with Emotion Dynamics (2023)
Presentation / Conference Contribution
Pan, Y., Zhang, R., Wang, J., Ding, Y., & Mitchell, K. (2023, October). Real-time Facial Animation for 3D Stylized Character with Emotion Dynamics. Presented at 31st ACM International Conference on Multimedia, Ottawa, CanadaOur aim is to improve animation production techniques' efficiency and effectiveness. We present two real-time solutions which drive character expressions in a geometrically consistent and perceptually valid way. Our first solution combines keyframe a... Read More about Real-time Facial Animation for 3D Stylized Character with Emotion Dynamics.
Towards Improving Accessibility of Web Auditing with Google Lighthouse (2023)
Presentation / Conference Contribution
McGill, T., Bamgboye, O., Liu, X., & Kalutharage, C. S. (2023, June). Towards Improving Accessibility of Web Auditing with Google Lighthouse. Presented at The 47th IEEE Annual Conference on Computers, Software, and Applications (COMPSAC), Turin, ItalyGoogle Lighthouse is a tool made by Google for auditing web pages performance, accessibility, SEO, and best practices with the intention of improving the quality of the websites. This allows software developers to understand areas of improvement with... Read More about Towards Improving Accessibility of Web Auditing with Google Lighthouse.
To Switch or not to Switch: Predicting the Benefit of Switching between Algorithms based on Trajectory Features (2023)
Presentation / Conference Contribution
Vermetten, D., Wang, H., Sim, K., & Hart, E. (2023, April). To Switch or not to Switch: Predicting the Benefit of Switching between Algorithms based on Trajectory Features. Presented at Evo Applications 2023, Brno, Czech RepublicDynamic algorithm selection aims to exploit the complementarity of multiple optimization algorithms by switching between them during the search. While these kinds of dynamic algorithms have been shown to have potential to outperform their component a... Read More about To Switch or not to Switch: Predicting the Benefit of Switching between Algorithms based on Trajectory Features.
A Quality-Diversity Approach to Evolving a Repertoire of Diverse Behaviour-Trees in Robot Swarms (2023)
Presentation / Conference Contribution
Montague, K., Hart, E., Paechter, B., & Nitschke, G. (2023, April). A Quality-Diversity Approach to Evolving a Repertoire of Diverse Behaviour-Trees in Robot Swarms. Presented at EVOStar 2023, Brno, CzechiaDesigning controllers for a swarm of robots such that collabo-rative behaviour emerges at the swarm level is known to be challenging. Evolutionary approaches have proved promising, with attention turning more recently to evolving repertoires of dive... Read More about A Quality-Diversity Approach to Evolving a Repertoire of Diverse Behaviour-Trees in Robot Swarms.
Improving the size and quality of MAP-Elites containers via multiple emitters and decoders for urban logistics (2023)
Presentation / Conference Contribution
Urquhart, N., & Hart, E. (2023, April). Improving the size and quality of MAP-Elites containers via multiple emitters and decoders for urban logistics. Presented at Evo Applications 2023, Brno, Czech RepublicQuality-diversity (QD) methods such as MAP-Elites have been demonstrated to be useful in the domain of combinatorial optimisation due to their ability to generate a large set of solutions to a single-objective problem that are diverse with respect to... Read More about Improving the size and quality of MAP-Elites containers via multiple emitters and decoders for urban logistics.
High Resolution Remote Sensing Water Image Segmentation Based on Dual Branch Network (2022)
Presentation / Conference Contribution
Zhang, Z., Li, Y., Liu, Q., & Liu, X. (2022, September). High Resolution Remote Sensing Water Image Segmentation Based on Dual Branch Network. Presented at 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Falerna, ItalyA basic stage of hydrological research is to automatically extract water body information from high-resolution remote sensing images. Various methods based on deep learning convolutional neural networks have been proposed in recent studies to achieve... Read More about High Resolution Remote Sensing Water Image Segmentation Based on Dual Branch Network.
Dense-FCN: A Deep Learning Approach for Weather Radar Beam Blockage Correction (2022)
Presentation / Conference Contribution
Sun, J., Wu, H., Liu, Q., Liu, X., & Ma, J. (2022, September). Dense-FCN: A Deep Learning Approach for Weather Radar Beam Blockage Correction. Presented at 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Falerna, ItalyThe weather radar will receive a lot of non-meteorological echo information during the body scan process, such as: object echoes, co-wave interference echoes, airplanes, flocks of birds, etc. These non-meteorological echoes will cause pollution to no... Read More about Dense-FCN: A Deep Learning Approach for Weather Radar Beam Blockage Correction.
An Input Sampling Scheme to Radar Echo Extrapolation For RNN-Based Models (2022)
Presentation / Conference Contribution
Wang, Y., Yang, Z., Liu, Q., & Liu, X. (2022, September). An Input Sampling Scheme to Radar Echo Extrapolation For RNN-Based Models. Presented at 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Falerna, ItalyShort-term heavy rainfall can have a significant impact on people's production, life and travel. Numerical Weather Prediction (NWP) is complex. It can predict weather conditions for the next week or even two weeks, but cannot predict the weather in t... Read More about An Input Sampling Scheme to Radar Echo Extrapolation For RNN-Based Models.
Emerging Simulation Frameworks for Analyzing Smart Grid Cyberattack: A Literature Review (2022)
Presentation / Conference Contribution
Darteh, O. F., Liu, Q., Liu, X., Bah, I., Nakoty, F. M., & Acakpovi, A. (2022, September). Emerging Simulation Frameworks for Analyzing Smart Grid Cyberattack: A Literature Review. Presented at 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Falerna, ItalyThe transition of the conventional power grid into the Smart Grid (SG), a widely distributed energy delivery network characterized by a two-way flow of electricity and information, is key for energy sector stakeholders. Despite the SG’s clear improve... Read More about Emerging Simulation Frameworks for Analyzing Smart Grid Cyberattack: A Literature Review.
Explainable AI and Deep Autoencoders Based Security Framework for IoT Network Attack Certainty (Extended Abstract) (2022)
Presentation / Conference Contribution
Kalutharage, C. S., Liu, X., & Chrysoulas, C. (2022, September). Explainable AI and Deep Autoencoders Based Security Framework for IoT Network Attack Certainty (Extended Abstract). Presented at 27th European Symposium on Research in Computer Security (ESORICS) 2022, Copenhagen, DenmarkOver the past few decades, Machine Learning (ML)-based intrusion detection systems (IDS) have become increasingly popular and continue to show remarkable performance in detecting attacks. However, the lack of transparency in their decision-making pro... Read More about Explainable AI and Deep Autoencoders Based Security Framework for IoT Network Attack Certainty (Extended Abstract).
Intelligent Question Answering System Based on Knowledge Graph (2022)
Presentation / Conference Contribution
Feng, X., Liu, Q., & Liu, X. (2021, December). Intelligent Question Answering System Based on Knowledge Graph. Presented at IEEE SmartCity-2021, Hainan, ChinaIn order to build a smart city and pursue more efficient city management, various industries have introduced intelligent question answering into process management. The intelligent question answering system based on the knowledge graph is dedicated t... Read More about Intelligent Question Answering System Based on Knowledge Graph.
Augmenting Novelty Search with a Surrogate Model to Engineer Meta-Diversity in Ensembles of Classifiers (2022)
Presentation / Conference Contribution
Cardoso, R. P., Hart, E., Burth Kurka, D., & Pitt, J. (2022, April). Augmenting Novelty Search with a Surrogate Model to Engineer Meta-Diversity in Ensembles of Classifiers. Presented at EvoSTAR, MadridUsing Neuroevolution combined with Novelty Search to promote behavioural diversity is capable of constructing high-performing ensembles for classification. However, using gradient descent to train evolved architectures during the search can be comput... Read More about Augmenting Novelty Search with a Surrogate Model to Engineer Meta-Diversity in Ensembles of Classifiers.
An Intelligent Method for Upper Limb Posture Recognition Based on Limited MEMS Data (2022)
Presentation / Conference Contribution
Wu, Z., Wu, X., Liu, Q., & Liu, X. (2021, October). An Intelligent Method for Upper Limb Posture Recognition Based on Limited MEMS Data. Presented at The 6th IEEE Cyber Science and Technology Congress (2021) (CyberSciTech 2021), AB, Canada [Online]There are more than 10 million new stroke cases worldwide every year, and stroke has become one of the main causes of death and disability. In recent years, with the rapid development of computer science and technology, through the combination of Int... Read More about An Intelligent Method for Upper Limb Posture Recognition Based on Limited MEMS Data.