Skip to main content

Research Repository

Advanced Search

CiViL: Common-sense- and Visual-enhanced natural Language generation

People Involved

Most NLG is Low-Resource: here's what we can do about it (2022)
Presentation / Conference Contribution
Howcroft, D. M., & Gkatzia, D. (2022, December). Most NLG is Low-Resource: here's what we can do about it. Presented at Workshop on Natural Language Generation, Evaluation, and Metrics (GEM), Abu Dhabi, UAE

Many domains and tasks in natural language generation (NLG) are inherently 'low-resource', where training data, tools and linguistic analyses are scarce. This poses a particular challenge to researchers and system developers in the era of machine-lea... Read More about Most NLG is Low-Resource: here's what we can do about it.

A Commonsense-Enhanced Document-Grounded Conversational Agent: A Case Study on Task-Based Dialogue (2022)
Book Chapter
Strathearn, C., & Gkatzia, D. (2023). A Commonsense-Enhanced Document-Grounded Conversational Agent: A Case Study on Task-Based Dialogue. In M. Abbas (Ed.), Analysis and Application of Natural Language and Speech Processing (123-144). Springer. https://doi.org/10.1007/978-3-031-11035-1_6

This paper argues that future dialogue systems must retrieve relevant information from multiple structured and unstructured data sources in order to generate natural and informative responses as well as exhibit commonsense capabilities and flexibilit... Read More about A Commonsense-Enhanced Document-Grounded Conversational Agent: A Case Study on Task-Based Dialogue.