Dr Dimitra Gkatzia D.Gkatzia@napier.ac.uk
Associate Professor
Dr Dimitra Gkatzia D.Gkatzia@napier.ac.uk
Associate Professor
Prof Amir Hussain A.Hussain@napier.ac.uk
Professor
A Trimodel SAR Semisupervised Recognition Method Based on Attention-Augmented Convolutional Networks (2022)
Journal Article
Yan, S., Zhang, Y., Gao, F., Sun, J., Hussain, A., & Zhou, H. (2022). A Trimodel SAR Semisupervised Recognition Method Based on Attention-Augmented Convolutional Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 9566-9583. https://doi.org/10.1109/jstars.2022.3218360Semisupervised learning in synthetic aperture radars (SARs) is one of the research hotspots in the field of radar image automatic target recognition. It can efficiently deal with challenging environments where there are insufficient labeled samples a... Read More about A Trimodel SAR Semisupervised Recognition Method Based on Attention-Augmented Convolutional Networks.
A Commonsense-Enhanced Document-Grounded Conversational Agent: A Case Study on Task-Based Dialogue (2022)
Book Chapter
Strathearn, C., & Gkatzia, D. (2023). A Commonsense-Enhanced Document-Grounded Conversational Agent: A Case Study on Task-Based Dialogue. In M. Abbas (Ed.), Analysis and Application of Natural Language and Speech Processing (123-144). Springer. https://doi.org/10.1007/978-3-031-11035-1_6This paper argues that future dialogue systems must retrieve relevant information from multiple structured and unstructured data sources in order to generate natural and informative responses as well as exhibit commonsense capabilities and flexibilit... Read More about A Commonsense-Enhanced Document-Grounded Conversational Agent: A Case Study on Task-Based Dialogue.
Arabic sentiment analysis using dependency-based rules and deep neural networks (2022)
Journal Article
Diwali, A., Dashtipour, K., Saeedi, K., Gogate, M., Cambria, E., & Hussain, A. (2022). Arabic sentiment analysis using dependency-based rules and deep neural networks. Applied Soft Computing, 127, Article 109377. https://doi.org/10.1016/j.asoc.2022.109377With the growth of social platforms in recent years and the rapid increase in the means of communication through these platforms, a significant amount of textual data is available that contains an abundance of individuals’ opinions. Sentiment analysi... Read More about Arabic sentiment analysis using dependency-based rules and deep neural networks.
Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: Observational Study (2022)
Journal Article
Hussain, Z., Sheikh, Z., Tahir, A., Dashtipour, K., Gogate, M., Sheikh, A., & Hussain, A. (2022). Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: Observational Study. JMIR Public Health and Surveillance, 8(5), Article e32543. https://doi.org/10.2196/32543Background:
The roll-out of vaccines for SARS-CoV-2 in the United Kingdom, started in December 2020. Uptake has been high, and there has been a subsequent reduction in infections, hospitalisations and deaths in vaccinated individuals. However, vacci... Read More about Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: Observational Study.
Towards Faster Training Algorithms Exploiting Bandit Sampling From Convex to Strongly Convex Conditions (2022)
Journal Article
Zhou, Y., Huang, K., Cheng, C., Wang, X., Hussain, A., & Liu, X. (2023). Towards Faster Training Algorithms Exploiting Bandit Sampling From Convex to Strongly Convex Conditions. IEEE Transactions on Emerging Topics in Computational Intelligence, 7(2), 565-577. https://doi.org/10.1109/tetci.2022.3171797The training process for deep learning and pattern recognition normally involves the use of convex and strongly convex optimization algorithms such as AdaBelief and SAdam to handle lots of “uninformative” samples that should be ignored, thus incurrin... Read More about Towards Faster Training Algorithms Exploiting Bandit Sampling From Convex to Strongly Convex Conditions.
RoadSeg-CD: A Network With Connectivity Array and Direction Map for Road Extraction From SAR Images (2022)
Journal Article
Gao, F., Tu, J., Wang, J., Hussain, A., & Zhou, H. (2022). RoadSeg-CD: A Network With Connectivity Array and Direction Map for Road Extraction From SAR Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 3992-4003. https://doi.org/10.1109/jstars.2022.3175594Road extraction from synthetic aperture radar (SAR) images has attracted much attention in the field of remote sensing image processing. General road extraction algorithms, affected by shadows of buildings and trees, are prone to producing fragmented... Read More about RoadSeg-CD: A Network With Connectivity Array and Direction Map for Road Extraction From SAR Images.
FastAdaBelief: Improving Convergence Rate for Belief-Based Adaptive Optimizers by Exploiting Strong Convexity (2022)
Journal Article
Zhou, Y., Huang, K., Cheng, C., Wang, X., Hussain, A., & Liu, X. (2023). FastAdaBelief: Improving Convergence Rate for Belief-Based Adaptive Optimizers by Exploiting Strong Convexity. IEEE Transactions on Neural Networks and Learning Systems, 34(9), 6515 - 6529. https://doi.org/10.1109/tnnls.2022.3143554AdaBelief, one of the current best optimizers, demonstrates superior generalization ability over the popular Adam algorithm by viewing the exponential moving average of observed gradients. AdaBelief is theoretically appealing in which it has a data-d... Read More about FastAdaBelief: Improving Convergence Rate for Belief-Based Adaptive Optimizers by Exploiting Strong Convexity.
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search