Skip to main content

Research Repository

Advanced Search

Dr Thomas Tan's Outputs (76)

Dynamic Caching Dependency-Aware Task Offloading in Mobile Edge Computing (2025)
Journal Article
Zhao, L., Zhao, Z., Hawbani, A., Liu, Z., Tan, Z., & Yu, K. (online). Dynamic Caching Dependency-Aware Task Offloading in Mobile Edge Computing. IEEE Transactions on Computers, https://doi.org/10.1109/TC.2025.3533091

Mobile Edge Computing (MEC) is a distributed computing paradigm that provides computing capabilities at the periphery of mobile cellular networks. This architecture empowers Mobile Users (MUs) to offload computation-intensive applications to large-sc... Read More about Dynamic Caching Dependency-Aware Task Offloading in Mobile Edge Computing.

A Multi-UAV Cooperative Task Scheduling in Dynamic Environments: Throughput Maximization (2024)
Journal Article
Zhao, L., Li, S., Tan, Z., Hawbani, A., Timotheou, S., & Yu, K. (online). A Multi-UAV Cooperative Task Scheduling in Dynamic Environments: Throughput Maximization. IEEE Transactions on Computers, https://doi.org/10.1109/tc.2024.3483636

Unmanned aerial vehicle (UAV) has been considered a promising technology for advancing terrestrial mobile computing in the dynamic environment. In this research field, throughput, the number of completed tasks and latency are critical evaluation indi... Read More about A Multi-UAV Cooperative Task Scheduling in Dynamic Environments: Throughput Maximization.

Towards a Cyberbullying Detection Approach: Fine-Tuned Contrastive Self- Supervised Learning for Data Augmentation (2024)
Journal Article
Alharigy, L., Alnuaim, H., Moradpoor, N., & Tan, T. (online). Towards a Cyberbullying Detection Approach: Fine-Tuned Contrastive Self- Supervised Learning for Data Augmentation. International Journal of Data Science and Analytics, https://doi.org/10.1007/s41060-024-00607-9

Cyberbullying on social media platforms is pervasive and challenging to detect due to linguistic subtleties and the need for extensive data annotation. We introduce a Deep Contrastive Self-Supervised Learning (DCSSL) model that integrates a Natural L... Read More about Towards a Cyberbullying Detection Approach: Fine-Tuned Contrastive Self- Supervised Learning for Data Augmentation.

Reliable and Fair Trustworthiness Evaluation Protocol for Platoon Service Recommendation System (2024)
Journal Article
Cheng, H., Tan, Z., Zhang, X., & Liu, Y. (online). Reliable and Fair Trustworthiness Evaluation Protocol for Platoon Service Recommendation System. Chinese Journal of Electronics, https://doi.org/10.23919/cje.2023.00.012

Aiming at the problems of the communication inefficiency and high energy consumption in vehicular networks, the platoon service recommendation systems (PSRS) are presented. Many schemes for evaluating the reputation of platoon head vehicles have been... Read More about Reliable and Fair Trustworthiness Evaluation Protocol for Platoon Service Recommendation System.

Overtaking Feasibility Prediction for Mixed Connected and Connectionless Vehicles (2024)
Journal Article
Zhao, L., Qian, H., Hawbani, A., Al-Dubai, A. Y., Tan, Z., Yu, K., & Zomaya, A. Y. (2024). Overtaking Feasibility Prediction for Mixed Connected and Connectionless Vehicles. IEEE Transactions on Intelligent Transportation Systems, 25(10), 15065-15080. https://doi.org/10.1109/TITS.2024.3398602

Intelligent transportation systems (ITS) utilize advanced technologies to enhance traffic safety and efficiency, contributing significantly to modern transportation. The integration of Vehicle-to-Everything (V2X) further elevates road safety and fost... Read More about Overtaking Feasibility Prediction for Mixed Connected and Connectionless Vehicles.

MalSort: Lightweight and efficient image-based malware classification using masked self-supervised framework with Swin Transformer (2024)
Journal Article
Wang, F., Shi, X., Yang, F., Song, R., Li, Q., Tan, Z., & Wang, C. (2024). MalSort: Lightweight and efficient image-based malware classification using masked self-supervised framework with Swin Transformer. Journal of Information Security and Applications, 83, Article 103784. https://doi.org/10.1016/j.jisa.2024.103784

The proliferation of malware has exhibited a substantial surge in both quantity and diversity, posing significant threats to the Internet and indispensable network applications. The accurate and effective classification makes a pivotal role in defend... Read More about MalSort: Lightweight and efficient image-based malware classification using masked self-supervised framework with Swin Transformer.

STIDNet: Identity-Aware Face Forgery Detection with Spatiotemporal Knowledge Distillation (2024)
Journal Article
Fang, M., Yu, L., Xie, H., Tan, Q., Tan, Z., Hussain, A., Wang, Z., Li, J., & Tian, Z. (2024). STIDNet: Identity-Aware Face Forgery Detection with Spatiotemporal Knowledge Distillation. IEEE Transactions on Computational Social Systems, 11(4), 5354 - 5366. https://doi.org/10.1109/tcss.2024.3356549

The impressive development of facial manipulation techniques has raised severe public concerns. Identity-aware methods, especially suitable for protecting celebrities, are seen as one of promising face forgery detection approaches with additional ref... Read More about STIDNet: Identity-Aware Face Forgery Detection with Spatiotemporal Knowledge Distillation.

Machine Un-learning: An Overview of Techniques, Applications, and Future Directions (2023)
Journal Article
Sai, S., Mittal, U., Chamola, V., Huang, K., Spinelli, I., Scardapane, S., Tan, Z., & Hussain, A. (2024). Machine Un-learning: An Overview of Techniques, Applications, and Future Directions. Cognitive Computation, 16, 482-506. https://doi.org/10.1007/s12559-023-10219-3

ML applications proliferate across various sectors. Large internet firms employ ML to train intelligent models using vast datasets, including sensitive user information. However, new regulations like GDPR require data removal by businesses. Deleting... Read More about Machine Un-learning: An Overview of Techniques, Applications, and Future Directions.

A Digital Twin-Assisted Intelligent Partial Offloading Approach for Vehicular Edge Computing (2023)
Journal Article
Zhao, L., Zhao, Z., Zhang, E., Hawbani, A., Al-Dubai, A., Tan, Z., & Hussain, A. (2023). A Digital Twin-Assisted Intelligent Partial Offloading Approach for Vehicular Edge Computing. IEEE Journal on Selected Areas in Communications, 41(11), 3386-3400. https://doi.org/10.1109/jsac.2023.3310062

Vehicle Edge Computing (VEC) is a promising paradigm that exposes Mobile Edge Computing (MEC) to road scenarios. In VEC, task offloading can enable vehicles to offload the computing tasks to nearby Roadside Units (RSUs) that deploy computing capabili... Read More about A Digital Twin-Assisted Intelligent Partial Offloading Approach for Vehicular Edge Computing.

MedOptNet: Meta-Learning Framework for Few-shot Medical Image Classification (2023)
Journal Article
Lu, L., Cui, X., Tan, Z., & Wu, Y. (2024). MedOptNet: Meta-Learning Framework for Few-shot Medical Image Classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 21(4), 725-736. https://doi.org/10.1109/TCBB.2023.3284846

In the medical research domain, limited data and high annotation costs have made efficient classification under few-shot conditions a popular research area. This paper proposes a meta-learning framework, termed MedOptNet, for few-shot medical image c... Read More about MedOptNet: Meta-Learning Framework for Few-shot Medical Image Classification.

An omnidirectional approach to touch-based continuous authentication (2023)
Journal Article
Aaby, P., Giuffrida, M. V., Buchanan, W. J., & Tan, Z. (2023). An omnidirectional approach to touch-based continuous authentication. Computers and Security, 128, Article 103146. https://doi.org/10.1016/j.cose.2023.103146

This paper focuses on how touch interactions on smartphones can provide a continuous user authentication service through behaviour captured by a touchscreen. While efforts are made to advance touch-based behavioural authentication, researchers often... Read More about An omnidirectional approach to touch-based continuous authentication.

Preserving Differential Privacy in Deep Learning Based on Feature Relevance Region Segmentation (2023)
Journal Article
Wang, F., Xie, M., Tan, Z., Li, Q., & Wang, C. (2024). Preserving Differential Privacy in Deep Learning Based on Feature Relevance Region Segmentation. IEEE Transactions on Emerging Topics in Computing, 12(1), 307 - 315. https://doi.org/10.1109/TETC.2023.3244174

In the era of big data, deep learning techniques provide intelligent solutions for various problems in real-life scenarios. However, deep neural networks depend on large-scale datasets including sensitive data, which causes the potential risk of priv... Read More about Preserving Differential Privacy in Deep Learning Based on Feature Relevance Region Segmentation.

CDTier:A Chinese Dataset of Threat Intelligence Entity Relationships (2023)
Journal Article
Zhou, Y., Ren, Y., Yi, M., Xiao, Y., Tan, Z., Moustafa, N., & Tian, Z. (2023). CDTier:A Chinese Dataset of Threat Intelligence Entity Relationships. IEEE Transactions on Sustainable Computing, 8(4), 627-638. https://doi.org/10.1109/TSUSC.2023.3240411

Cyber Threat Intelligence (CTI), which is knowledge of cyberspace threats gathered from security data, is critical in defending against cyberattacks.However, there is no open-source CTI dataset for security researchers to effectively apply enormous C... Read More about CDTier:A Chinese Dataset of Threat Intelligence Entity Relationships.

Special Issue on Adversarial AI to IoT Security and Privacy Protection: Attacks and Defenses (2022)
Journal Article
Gao, H., & Tan, Z. (2022). Special Issue on Adversarial AI to IoT Security and Privacy Protection: Attacks and Defenses. Computer Journal, 65(11), 2847-2848. https://doi.org/10.1093/comjnl/bxac128

The prosperity of social IoT data brings revolutionary changes to our daily lives and greatly increases the existing data volume. But IoT data are vulnerable due to security and privacy issues. Over the past few years, malicious adversaries exploited... Read More about Special Issue on Adversarial AI to IoT Security and Privacy Protection: Attacks and Defenses.

Ensemble learning-based IDS for sensors telemetry data in IoT networks (2022)
Journal Article
Naz, N., Khan, M. A., Alsuhibany, S. A., Diyan, M., Tan, Z., Khan, M. A., & Ahmad, J. (2022). Ensemble learning-based IDS for sensors telemetry data in IoT networks. Mathematical Biosciences and Engineering, 19(10), 10550-10580. https://doi.org/10.3934/mbe.2022493

The Internet of Things (IoT) is a paradigm that connects a range of physical smart devices to provide ubiquitous services to individuals and automate their daily tasks. IoT devices collect data from the surrounding environment and communicate with ot... Read More about Ensemble learning-based IDS for sensors telemetry data in IoT networks.

Evaluation Mechanism for Decentralised Collaborative Pattern Learning in Heterogeneous Vehicular Networks (2022)
Journal Article
Qiao, C., Qiu, J., Tan, Z., Min, G., Zomaya, A. Y., & Tian, Z. (2023). Evaluation Mechanism for Decentralised Collaborative Pattern Learning in Heterogeneous Vehicular Networks. IEEE Transactions on Intelligent Transportation Systems, 24(11), 13123 - 13132. https://doi.org/10.1109/TITS.2022.3186630

Collaborative machine learning, especially Feder-ated Learning (FL), is widely used to build high-quality Machine Learning (ML) models in the Internet of Vehicles (IoV). In this paper, we study the performance evaluation problem in an inherently hete... Read More about Evaluation Mechanism for Decentralised Collaborative Pattern Learning in Heterogeneous Vehicular Networks.

Building Towards Automated Cyberbullying Detection: A Comparative Analysis (2022)
Journal Article
Al Harigy, L. M., Al Nuaim, H. A., Moradpoor, N., & Tan, Z. (2022). Building Towards Automated Cyberbullying Detection: A Comparative Analysis. Computational Intelligence and Neuroscience, 2022, Article 4794227. https://doi.org/10.1155/2022/4794227

The increased use of social media between digitally anonymous users, sharing their thoughts and opinions, can facilitate participation and collaboration. However, it’s this anonymity feature which gives users freedom of speech and allows them to cond... Read More about Building Towards Automated Cyberbullying Detection: A Comparative Analysis.

A novel flow-vector generation approach for malicious traffic detection (2022)
Journal Article
Hou, J., Liu, F., Lu, H., Tan, Z., Zhuang, X., & Tian, Z. (2022). A novel flow-vector generation approach for malicious traffic detection. Journal of Parallel and Distributed Computing, 169, 72-86. https://doi.org/10.1016/j.jpdc.2022.06.004

Malicious traffic detection is one of the most important parts of cyber security. The approaches of using the flow as the detection object are recognized as effective. Benefiting from the development of deep learning techniques, raw traffic can be di... Read More about A novel flow-vector generation approach for malicious traffic detection.

Toward Machine Intelligence that Learns to Fingerprint Polymorphic Worms in IoT (2022)
Journal Article
Wang, F., Yang, S., Wang, C., Li, Q., Babaagba, K., & Tan, Z. (2022). Toward Machine Intelligence that Learns to Fingerprint Polymorphic Worms in IoT. International Journal of Intelligent Systems, 37(10), 7058-7078. https://doi.org/10.1002/int.22871

Internet of Things (IoT) is fast growing. Non-PC devices under the umbrella of IoT have been increasingly applied in various fields and will soon account for a significant share of total Internet traffic. However, the security and privacy of IoT and... Read More about Toward Machine Intelligence that Learns to Fingerprint Polymorphic Worms in IoT.

A Novel Nomad Migration-Inspired Algorithm for Global Optimization (2022)
Journal Article
Lin, N., Fu, L., Zhao, L., Hawbani, A., Tan, Z., Al-Dubai, A., & Min, G. (2022). A Novel Nomad Migration-Inspired Algorithm for Global Optimization. Computers and Electrical Engineering, 100, Article 107862. https://doi.org/10.1016/j.compeleceng.2022.107862

Nature-inspired computing (NIC) has been widely studied for many optimization scenarios. However, miscellaneous solution space of real-world problem causes it is challenging to guarantee the global optimum. Besides, cumbersome structure and complex p... Read More about A Novel Nomad Migration-Inspired Algorithm for Global Optimization.