Skip to main content

Research Repository

Advanced Search

All Outputs (12)

Understanding fitness landscapes in morpho-evolution via local optima networks (2024)
Presentation / Conference Contribution
Thomson, S. L., Le Goff, L., Hart, E., & Buchanan, E. (2024, July). Understanding fitness landscapes in morpho-evolution via local optima networks. Presented at Genetic and Evolutionary Computation Conference (GECCO 2024), Melbourne, Australia

Morpho-Evolution (ME) refers to the simultaneous optimisation of a robot's design and controller to maximise performance given a task and environment. Many genetic encodings have been proposed which are capable of representing design and control. Pre... Read More about Understanding fitness landscapes in morpho-evolution via local optima networks.

Temporal True and Surrogate Fitness Landscape Analysis for Expensive Bi-Objective Optimisation Expensive Bi-Objective (2024)
Presentation / Conference Contribution
Rodriguez, C. J., Thomson, S. L., Alderliesten, T., & Bosman, P. A. N. (2024, July). Temporal True and Surrogate Fitness Landscape Analysis for Expensive Bi-Objective Optimisation Expensive Bi-Objective. Presented at Genetic and Evolutionary Computation Conference (GECCO 2024), Melbourne, Australia

Many real-world problems have expensive-to-compute fitness functions and are multi-objective in nature. Surrogate-assisted evolutionary algorithms are often used to tackle such problems. Despite this, literature about analysing the fitness landscapes... Read More about Temporal True and Surrogate Fitness Landscape Analysis for Expensive Bi-Objective Optimisation Expensive Bi-Objective.

Factors Impacting Landscape Ruggedness in Control Problems: a Case Study (2024)
Presentation / Conference Contribution
Saliby, M. E., Medvet, E., Nadizar, G., Salvato, E., & Thomson, S. L. (2024, September). Factors Impacting Landscape Ruggedness in Control Problems: a Case Study. Presented at WIVACE 2024 (XVIII International Workshop on Artificial Life and Evolutionary Computation), Namur, Belgium

Understanding fitness landscapes in evolutionary robotics (ER) can provide valuable insights into the considered robotic problems as well as into the strategies found by evolutionary algorithms (EAs) to address them, ultimately guiding practitioners... Read More about Factors Impacting Landscape Ruggedness in Control Problems: a Case Study.

Entropy, Search Trajectories, and Explainability for Frequency Fitness Assignment (2024)
Presentation / Conference Contribution
Thomson, S. L., Ochoa, G., van den Berg, D., Liang, T., & Weise, T. (2024, September). Entropy, Search Trajectories, and Explainability for Frequency Fitness Assignment. Presented at Parallel Problem Solving from Nature (PPSN 2024), Hagenberg, Austria

Local optima are a menace that can trap optimisation processes. Frequency fitness assignment (FFA) is an concept aiming to overcome this problem. It steers the search towards solutions with rare fitness instead of high-quality fitness. FFA-based algo... Read More about Entropy, Search Trajectories, and Explainability for Frequency Fitness Assignment.

A Deep Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajectories (2024)
Presentation / Conference Contribution
van Stein, N., Thomson, S. L., & Kononova, A. V. (2024, September). A Deep Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajectories. Paper presented at Parallel Problem Solving from Nature (PPSN) 2024, Hagenberg, Austria

To guide the design of better iterative optimisation heuristics, it is imperative to understand how inherent structural biases within algorithm components affect the performance on a wide variety of search landscapes. This study explores the impact o... Read More about A Deep Dive into Effects of Structural Bias on CMA-ES Performance along Affine Trajectories.

Explaining evolutionary feature selection via local optima networks (2024)
Presentation / Conference Contribution
Adair, J., Thomson, S. L., & Brownlee, A. E. (2024, July). Explaining evolutionary feature selection via local optima networks. Presented at ACM Genetic and Evolutionary Computation Conference (GECCO) 2024, Melbourne, Australia

We analyse fitness landscapes of evolutionary feature selection to obtain information about feature importance in supervised machine learning. Local optima networks (LONs) are a compact representation of a landscape, and can potentially be adapted fo... Read More about Explaining evolutionary feature selection via local optima networks.

Exploring the use of fitness landscape analysis for understanding malware evolution (2024)
Presentation / Conference Contribution
Babaagba, K., Murali, R., & Thomson, S. L. (2024, July). Exploring the use of fitness landscape analysis for understanding malware evolution. Presented at ACM Genetic and Evolutionary Computation Conference (GECCO) 2024, Melbourne, Australia

We conduct a preliminary study exploring the potential of using fitness landscape analysis for understanding the evolution of malware. This type of optimisation is fairly new and has not previously been studied through the lens of landscape analysis.... Read More about Exploring the use of fitness landscape analysis for understanding malware evolution.

Where the Really Hard Quadratic Assignment Problems Are: the QAP-SAT instances (2024)
Presentation / Conference Contribution
Verel, S., Thomson, S. L., & Rifki, O. (2024, April). Where the Really Hard Quadratic Assignment Problems Are: the QAP-SAT instances. Presented at EvoCOP 2024, Aberystwyth, UK

The Quadratic Assignment Problem (QAP) is one of the major domains in the field of evolutionary computation, and more widely in combinatorial optimization. This paper studies the phase transition of the QAP, which can be described as a dramatic chang... Read More about Where the Really Hard Quadratic Assignment Problems Are: the QAP-SAT instances.

Frequency Fitness Assignment for Untangling Proteins in 2D (2024)
Presentation / Conference Contribution
Koutstaal, J., Kommandeur, J., Timmer, R., Horn, R., Thomson, S. L., & van den Berg, D. (2024, April). Frequency Fitness Assignment for Untangling Proteins in 2D. Presented at EvoStar 2024, Aberyswyth, UK

At the time of writing, there is no known deterministic-time algorithm to sample valid initial solutions with uniform random distribution for the HP protein folding model, because guaranteed uniform random sampling produces collisions (i.e. constrain... Read More about Frequency Fitness Assignment for Untangling Proteins in 2D.

Information flow and Laplacian dynamics on local optima networks (2024)
Presentation / Conference Contribution
Richter, H., & Thomson, S. L. (2024, June). Information flow and Laplacian dynamics on local optima networks. Presented at IEEE Congress on Evolutionary Computation (IEEE CEC), Yokohama, Japan

We propose a new way of looking at local optima networks (LONs). LONs represent fitness landscapes; the nodes are local optima, and the edges are search transitions between them. Many metrics computed on LONs have been proposed and shown to be linked... Read More about Information flow and Laplacian dynamics on local optima networks.