Skip to main content

Research Repository

Advanced Search

All Outputs (6)

A Novel Chaos-Based Privacy-Preserving Deep Learning Model for Cancer Diagnosis (2022)
Journal Article
Rehman, M. U., Shafique, A., Ghadi, Y. Y., Boulila, W., Jan, S. U., Gadekallu, T. R., Driss, M., & Ahmad, J. (2022). A Novel Chaos-Based Privacy-Preserving Deep Learning Model for Cancer Diagnosis. IEEE Transactions on Network Science and Engineering, 9(6), 4322-4337. https://doi.org/10.1109/tnse.2022.3199235

Early cancer identification is regarded as a challenging problem in cancer prevention for the healthcare community. In addition, ensuring privacy-preserving healthcare data becomes more difficult with the growing demand for sharing these data. This s... Read More about A Novel Chaos-Based Privacy-Preserving Deep Learning Model for Cancer Diagnosis.

Automated Grading of Diabetic Macular Edema Using Color Retinal Photographs (2022)
Presentation / Conference Contribution
Zubair, M., Ahmad, J., Alqahtani, F., Khan, F., Shah, S. A., Abbasi, Q. H., & Jan, S. U. (2022, May). Automated Grading of Diabetic Macular Edema Using Color Retinal Photographs. Presented at 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia

Diabetic Macular Edema (DME) is an advanced indication of diabetic retinopathy (DR). It starts with blurring in vision and can lead to partial or even complete irreversible visual compromise. The only cure is timely diagnosis, prevention and treatmen... Read More about Automated Grading of Diabetic Macular Edema Using Color Retinal Photographs.

Sensing and Artificial Intelligent Maternal-Infant Health Care Systems: A Review (2022)
Journal Article
Gulzar Ahmad, S., Iqbal, T., Javaid, A., Ullah Munir, E., Kirn, N., Jan, S. U., & Ramzan, N. (2022). Sensing and Artificial Intelligent Maternal-Infant Health Care Systems: A Review. Sensors, 22(12), Article 4362. https://doi.org/10.3390/s22124362

Currently, information and communication technology (ICT) allows health institutions to reach disadvantaged groups in rural areas using sensing and artificial intelligence (AI) technologies. Applications of these technologies are even more essential... Read More about Sensing and Artificial Intelligent Maternal-Infant Health Care Systems: A Review.

IoT-Enabled Vehicle Speed Monitoring System (2022)
Journal Article
Khan, S. U., Alam, N., Jan, S. U., & Koo, I. S. (2022). IoT-Enabled Vehicle Speed Monitoring System. Electronics, 11(4), Article 614. https://doi.org/10.3390/electronics11040614

Millions of people lose their lives each year worldwide due to traffic law violations, specifically, over speeding. The existing systems fail to report most of such violations due to their respective flaws. For instance, speed guns work in isolation... Read More about IoT-Enabled Vehicle Speed Monitoring System.

Multiple Participants’ Discrete Activity Recognition in a Well-Controlled Environment Using Universal Software Radio Peripheral Wireless Sensing (2022)
Journal Article
Saeed, U., Yaseen Shah, S., Aziz Shah, S., Liu, H., Alhumaidi Alotaibi, A., Althobaiti, T., Ramzan, N., Ullah Jan, S., Ahmad, J., & Abbasi, Q. H. (2022). Multiple Participants’ Discrete Activity Recognition in a Well-Controlled Environment Using Universal Software Radio Peripheral Wireless Sensing. Sensors, 22(3), Article 809. https://doi.org/10.3390/s22030809

Wireless sensing is the utmost cutting-edge way of monitoring different health-related activities and, concurrently, preserving most of the privacy of individuals. To meet future needs, multi-subject activity monitoring is in demand, whether it is fo... Read More about Multiple Participants’ Discrete Activity Recognition in a Well-Controlled Environment Using Universal Software Radio Peripheral Wireless Sensing.

Multiple Participants’ Discrete Activity Recognition in a Well-Controlled Environment Using Universal Software Radio Peripheral Wireless Sensing (2022)
Journal Article
Saeed, U., Yaseen Shah, S., Aziz Shah, S., Liu, H., Alhumaidi Alotaibi, A., Althobaiti, T., Ramzan, N., Ullah Jan, S., Ahmad, J., & H. Abbasi, Q. (2022). Multiple Participants’ Discrete Activity Recognition in a Well-Controlled Environment Using Universal Software Radio Peripheral Wireless Sensing. Sensors, 22(3), Article 809. https://doi.org/10.3390/s22030809

Wireless sensing is the utmost cutting-edge way of monitoring different health-related activities and, concurrently, preserving most of the privacy of individuals. To meet future needs, multi-subject activity monitoring is in demand, whether it is fo... Read More about Multiple Participants’ Discrete Activity Recognition in a Well-Controlled Environment Using Universal Software Radio Peripheral Wireless Sensing.