Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Towards a Unified Framework for Software-Hardware Integration in Evolutionary Robotics (2024)
Journal Article
Buchanan, E., Le Goff, L. K., Hale, M. F., Hart, E., Eiben, A. E., De Carlo, M., Angus, M., Woolley, R., Timmis, J., Winfield, A. F., & Tyrrell, A. M. (2024). Towards a Unified Framework for Software-Hardware Integration in Evolutionary Robotics. Robotics, 13(11), Article 157. https://doi.org/10.3390/robotics13110157

The discrepancy between simulated and hardware experiments, the reality gap, is a challenge in evolutionary robotics. While strategies have been proposed to address this gap in fixed-body robots, they are not viable when dealing with populations and... Read More about Towards a Unified Framework for Software-Hardware Integration in Evolutionary Robotics.

Improving Efficiency of Evolving Robot Designs via Self-Adaptive Learning Cycles and an Asynchronous Architecture (2024)
Presentation / Conference Contribution
Le Goff, L., & Hart, E. (2024, July). Improving Efficiency of Evolving Robot Designs via Self-Adaptive Learning Cycles and an Asynchronous Architecture. Presented at GECCO 2024 Embodied and Evolved Artificial Intelligence Workshop, Melbourne, Australia

Algorithmic frameworks for the joint optimisation of a robot's design and controller often utilise a learning loop nested within an evolutionary algorithm to refine the controller associated with a newly generated robot design. Intuitively, it is rea... Read More about Improving Efficiency of Evolving Robot Designs via Self-Adaptive Learning Cycles and an Asynchronous Architecture.

Understanding fitness landscapes in morpho-evolution via local optima networks (2024)
Presentation / Conference Contribution
Thomson, S. L., Le Goff, L., Hart, E., & Buchanan, E. (2024, July). Understanding fitness landscapes in morpho-evolution via local optima networks. Presented at Genetic and Evolutionary Computation Conference (GECCO 2024), Melbourne, Australia

Morpho-Evolution (ME) refers to the simultaneous optimisation of a robot's design and controller to maximise performance given a task and environment. Many genetic encodings have been proposed which are capable of representing design and control. Pre... Read More about Understanding fitness landscapes in morpho-evolution via local optima networks.

Generalized Early Stopping in Evolutionary Direct Policy Search (2024)
Journal Article
Arza, E., Le Goff, L. K., & Hart, E. (2024). Generalized Early Stopping in Evolutionary Direct Policy Search. ACM Transactions on Evolutionary Learning and Optimization, 4(3), Article 14. https://doi.org/10.1145/3653024

Lengthy evaluation times are common in many optimization problems such as direct policy search tasks, especially when they involve conducting evaluations in the physical world, e.g. in robotics applications. Often when evaluating solution over a fixe... Read More about Generalized Early Stopping in Evolutionary Direct Policy Search.