Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Sample and time efficient policy learning with CMA-ES and Bayesian Optimisation
Presentation / Conference Contribution
Le Goff, L. K., Buchanan, E., Hart, E., Eiben, A. E., Li, W., De Carlo, M., Hale, M. F., Angus, M., Woolley, R., Timmis, J., Winfield, A., & Tyrrell, A. M. (2020, July). Sample and time efficient policy learning with CMA-ES and Bayesian Optimisation. Presented at ALife 2020, Online

In evolutionary robot systems where morphologies and controllers of real robots are simultaneously evolved, it is clear that there is likely to be requirements to refine the inherited controller of a 'newborn' robot in order to better align it to its... Read More about Sample and time efficient policy learning with CMA-ES and Bayesian Optimisation.

On Pros and Cons of Evolving Topologies with Novelty Search
Presentation / Conference Contribution
Le Goff, L. K., Hart, E., Coninx, A., & Doncieux, S. (2020, July). On Pros and Cons of Evolving Topologies with Novelty Search. Presented at ALIFE 2020: The 2020 Conference on Artificial Life, Online

Novelty search was proposed as a means of circumventing deception and providing selective pressure towards novel behaviours to provide a path towards open-ended evolution. Initial implementations relied on neuro-evolution approaches which increased n... Read More about On Pros and Cons of Evolving Topologies with Novelty Search.

Evolution of Diverse, Manufacturable Robot Body Plans
Presentation / Conference Contribution
Buchanan, E., Le Goff, L., Hart, E., Eiben, A. E., De Carlo, M., Li, W., Hale, M. F., Angus, M., Woolley, R., Winfield, A. F., Timmis, J., & Tyrrell, A. M. (2020, December). Evolution of Diverse, Manufacturable Robot Body Plans. Presented at International Conference on Evolvable Systems (ICES), Canberra, Australia

Advances in rapid prototyping have opened up new avenues of research within Evolutionary Robotics in which not only controllers but also the body plans (morphologies) of robots can evolve in real-time and real-space. However, this also introduces new... Read More about Evolution of Diverse, Manufacturable Robot Body Plans.

Hardware Design for Autonomous Robot Evolution
Presentation / Conference Contribution
Hale, M. F., Angus, M., Buchanan, E., Li, W., Woolley, R., Le Goff, L. K., De Carlo, M., Timmis, J., Winfield, A. F., Hart, E., Eiben, A. E., & Tyrrell, A. M. (2020, December). Hardware Design for Autonomous Robot Evolution. Presented at International Conference on Evolvable Hardware, Canberra Australia

The long term goal of the Autonomous Robot Evolution (ARE) project is to create populations of physical robots, in which both the controllers and body plans are evolved. The transition for evolutionary designs from purely simulation environments into... Read More about Hardware Design for Autonomous Robot Evolution.

On the challenges of jointly optimising robot morphology and control using a hierarchical optimisation scheme
Presentation / Conference Contribution
Goff, L. K. L., & Hart, E. (2021, July). On the challenges of jointly optimising robot morphology and control using a hierarchical optimisation scheme. Presented at GECCO '21: Genetic and Evolutionary Computation Conference, Lille, France

We investigate a hierarchical scheme for the joint optimisation of robot bodies and controllers in a complex morphological space. An evolutionary algorithm optimises body-plans while a separate learning algorithm is applied to each body generated to... Read More about On the challenges of jointly optimising robot morphology and control using a hierarchical optimisation scheme.

Understanding fitness landscapes in morpho-evolution via local optima networks
Presentation / Conference Contribution
Thomson, S. L., Le Goff, L., Hart, E., & Buchanan, E. (2024, July). Understanding fitness landscapes in morpho-evolution via local optima networks. Presented at Genetic and Evolutionary Computation Conference (GECCO 2024), Melbourne, Australia

Morpho-Evolution (ME) refers to the simultaneous optimisation of a robot's design and controller to maximise performance given a task and environment. Many genetic encodings have been proposed which are capable of representing design and control. Pre... Read More about Understanding fitness landscapes in morpho-evolution via local optima networks.

Improving Efficiency of Evolving Robot Designs via Self-Adaptive Learning Cycles and an Asynchronous Architecture
Presentation / Conference Contribution
Le Goff, L., & Hart, E. (2024, July). Improving Efficiency of Evolving Robot Designs via Self-Adaptive Learning Cycles and an Asynchronous Architecture. Presented at GECCO 2024 Embodied and Evolved Artificial Intelligence Workshop, Melbourne, Australia

Algorithmic frameworks for the joint optimisation of a robot's design and controller often utilise a learning loop nested within an evolutionary algorithm to refine the controller associated with a newly generated robot design. Intuitively, it is rea... Read More about Improving Efficiency of Evolving Robot Designs via Self-Adaptive Learning Cycles and an Asynchronous Architecture.