Development of multi-modal hearing aids to enhance speech perception in noise
(2024)
Presentation / Conference Contribution
Goman, A., Gogate, M., Hussain, A., Dashtipour, K., Buck, B., Akeroyd, M., Anwar, U., Arslan, T., Hardy, D., & Hussain, A. (2024, September). Development of multi-modal hearing aids to enhance speech perception in noise. Presented at World Congress of Audiology, Paris, France
All Outputs (72)
Context-Aware Audio-Visual Speech Enhancement Based on Neuro-Fuzzy Modelling and User Preference Learning (2024)
Journal Article
Chen, S., Kirton-Wingate, J., Doctor, F., Arshad, U., Dashtipour, K., Gogate, M., Halim, Z., Al-Dubai, A., Arslan, T., & Hussain, A. (2024). Context-Aware Audio-Visual Speech Enhancement Based on Neuro-Fuzzy Modelling and User Preference Learning. IEEE Transactions on Fuzzy Systems, 32(10), 5400-5412. https://doi.org/10.1109/tfuzz.2024.3435050It is estimated that by 2050 approximately one in ten individuals globally will experience disabling hearing impairment. In the presence of everyday reverberant noise, a substantial proportion of individual users encounter challenges in speech compre... Read More about Context-Aware Audio-Visual Speech Enhancement Based on Neuro-Fuzzy Modelling and User Preference Learning.
DDformer: Dimension decomposition transformer with semi-supervised learning for underwater image enhancement (2024)
Journal Article
Gao, Z., Yang, J., Jiang, F., Jiao, X., Dashtipour, K., Gogate, M., & Hussain, A. (2024). DDformer: Dimension decomposition transformer with semi-supervised learning for underwater image enhancement. Knowledge-Based Systems, 297, Article 111977. https://doi.org/10.1016/j.knosys.2024.111977Vision-guided Autonomous Underwater Vehicles (AUVs) have gradually become significant tools for human exploration of the ocean. However, distorted images severely limit the visual ability, making it difficult to meet the needs of complex underwater e... Read More about DDformer: Dimension decomposition transformer with semi-supervised learning for underwater image enhancement.
Impact of the Covid-19 pandemic on audiology service delivery: Observational study of the role of social media in patient communication (2024)
Journal Article
Hussain, A., Hussain, Z., Gogate, M., Dashtipour, K., Ng, D., Riaz, M. S., Goman, A., Sheikh, A., & Hussain, A. (2024). Impact of the Covid-19 pandemic on audiology service delivery: Observational study of the role of social media in patient communication. PLOS ONE, 19(4), Article e0288223. https://doi.org/10.1371/journal.pone.0288223The Covid-19 pandemic has highlighted an era in hearing health care that necessitates a comprehensive rethinking of audiology service delivery. There has been a significant increase in the number of individuals with hearing loss who seek information... Read More about Impact of the Covid-19 pandemic on audiology service delivery: Observational study of the role of social media in patient communication.
Multivariate Procedure for Modeling and Prediction of Temperature in Punjab, Pakistan (2024)
Book Chapter
Kanwal, B., Ashraf, Z., Mehmood, T., Kanwal, S., Dashtipour, K., & Gogate, M. (2024). Multivariate Procedure for Modeling and Prediction of Temperature in Punjab, Pakistan. In W. Boulila, J. Ahmad, A. Koubaa, M. Driss, & I. Riadh Farah (Eds.), Decision Making and Security Risk Management for IoT Environments (99-124). Springer. https://doi.org/10.1007/978-3-031-47590-0_6Climate study often relies upon global climate models (GCM) to project future scenarios of change in climate behavior. This study aims to refine GCM results to fill the gap between local scale surface weather with regional atmospheric predictors. The... Read More about Multivariate Procedure for Modeling and Prediction of Temperature in Punjab, Pakistan.
Federated Learning for Market Surveillance (2024)
Book Chapter
Song, P., Kanwal, S., Dashtipour, K., & Gogate, M. (2024). Federated Learning for Market Surveillance. In W. Boulila, J. Ahmad, A. Koubaa, M. Driss, & I. Riadh Farah (Eds.), Decision Making and Security Risk Management for IoT Environments (199-218). Springer. https://doi.org/10.1007/978-3-031-47590-0_10The data utilized in market surveillance is highly sensitive; what may be available for machine learning is limited. In this paper, we examine how federated learning for time series data can be used to identify potential market abuse while maintainin... Read More about Federated Learning for Market Surveillance.
Statistical Downscaling Modeling for Temperature Prediction (2024)
Book Chapter
Ashraf, Z., Kanwal, B., Hussain, I., Dashtipour, K., Gogate, M., & Kanwal, S. (2024). Statistical Downscaling Modeling for Temperature Prediction. In W. Boulila, J. Ahmad, A. Koubaa, M. Driss, & I. Riadh Farah (Eds.), Decision Making and Security Risk Management for IoT Environments (147-169). Springer. https://doi.org/10.1007/978-3-031-47590-0_8The application compares the Statistical Downscaling Model (SDSM) and partial least square (PLS) to bridge the gap between (minimum and maximum) daily temperatures of 11 sites in Punjab between 1961 and 2013 with atmospheric variables. The data set w... Read More about Statistical Downscaling Modeling for Temperature Prediction.
Robust Real-time Audio-Visual Speech Enhancement based on DNN and GAN (2024)
Journal Article
Gogate, M., Dashtipour, K., & Hussain, A. (in press). Robust Real-time Audio-Visual Speech Enhancement based on DNN and GAN. IEEE Transactions on Artificial Intelligence, https://doi.org/10.1109/tai.2024.3366141The human auditory cortex contextually integrates audio-visual (AV) cues to better understand speech in a cocktail party situation. Recent studies have shown that AV speech enhancement (SE) models can significantly improve speech quality and intellig... Read More about Robust Real-time Audio-Visual Speech Enhancement based on DNN and GAN.
A hybrid dependency-based approach for Urdu sentiment analysis (2023)
Journal Article
Sehar, U., Kanwal, S., Allheeib, N. I., Almari, S., Khan, F., Dashtipur, K., Gogate, M., & Khashan, O. A. (2023). A hybrid dependency-based approach for Urdu sentiment analysis. Scientific Reports, 13, Article 22075. https://doi.org/10.1038/s41598-023-48817-8In the digital age, social media has emerged as a significant platform, generating a vast amount of raw data daily. This data reflects the opinions of individuals from diverse backgrounds, races, cultures, and age groups, spanning a wide range of top... Read More about A hybrid dependency-based approach for Urdu sentiment analysis.
Intrusion Detection Systems Using Machine Learning (2023)
Book Chapter
Taylor, W., Hussain, A., Gogate, M., Dashtipour, K., & Ahmad, J. (2024). Intrusion Detection Systems Using Machine Learning. In W. Boulila, J. Ahmad, A. Koubaa, M. Driss, & I. Riadh Farah (Eds.), Decision Making and Security Risk Management for IoT Environments (75-98). Springer. https://doi.org/10.1007/978-3-031-47590-0_5Intrusion detection systems (IDS) have developed and evolved over time to form an important component in network security. The aim of an intrusion detection system is to successfully detect intrusions within a network and to trigger alerts to system... Read More about Intrusion Detection Systems Using Machine Learning.
Fake News in Social Media: Fake News Themes and Intentional Deception in the News and on Social Media (2023)
Book Chapter
Idrees, H., Dashtipour, K., Hussain, T., & Gogate, M. (2024). Fake News in Social Media: Fake News Themes and Intentional Deception in the News and on Social Media. In W. Boulila, J. Ahmad, A. Koubaa, M. Driss, & I. Riadh Farah (Eds.), Decision Making and Security Risk Management for IoT Environments (219-229). Springer. https://doi.org/10.1007/978-3-031-47590-0_11From the start of the twenty-first century, online views and clicks have only increased. Within the last twenty years that has embedded through the use of social media. Within the last ten years news can spread on social media before it is shown on t... Read More about Fake News in Social Media: Fake News Themes and Intentional Deception in the News and on Social Media.
Solving the cocktail party problem using Multi-modal Hearing Assistive Technology Prototype (2023)
Presentation / Conference Contribution
Gogate, M., Dashtipour, K., & Hussain, A. (2023, December). Solving the cocktail party problem using Multi-modal Hearing Assistive Technology Prototype. Presented at Acoustics 2023, Sydney, AustraliaHearing loss is a major global health problem, affecting over 1.5 billion people. According to estimations by the World Health Organization, 83% of those who could benefit from hearing assistive devices do not use them. The limited adoption of hearin... Read More about Solving the cocktail party problem using Multi-modal Hearing Assistive Technology Prototype.
Sentiment Analysis Meets Explainable Artificial Intelligence: A Survey on Explainable Sentiment Analysis (2023)
Journal Article
Diwali, A., Saeedi, K., Dashtipour, K., Gogate, M., Cambria, E., & Hussain, A. (2024). Sentiment Analysis Meets Explainable Artificial Intelligence: A Survey on Explainable Sentiment Analysis. IEEE Transactions on Affective Computing, 15(3), 837-846. https://doi.org/10.1109/taffc.2023.3296373Sentiment analysis can be used to derive knowledge that is connected to emotions and opinions from textual data generated by people. As computer power has grown, and the availability of benchmark datasets has increased, deep learning models based on... Read More about Sentiment Analysis Meets Explainable Artificial Intelligence: A Survey on Explainable Sentiment Analysis.
Steel surface defect detection based on self-supervised contrastive representation learning with matching metric (2023)
Journal Article
Hu, X., Yang, J., Jiang, F., Hussain, A., Dashtipour, K., & Gogate, M. (2023). Steel surface defect detection based on self-supervised contrastive representation learning with matching metric. Applied Soft Computing, 145, Article 110578. https://doi.org/10.1016/j.asoc.2023.110578Defect detection is crucial in the quality control of industrial applications. Existing supervised methods are heavily reliant on the large amounts of labeled data. However, labeled data in some specific fields are still scarce, and it requires profe... Read More about Steel surface defect detection based on self-supervised contrastive representation learning with matching metric.
Arabic Sentiment Analysis Based on Word Embeddings and Deep Learning (2023)
Journal Article
Elhassan, N., Varone, G., Ahmed, R., Gogate, M., Dashtipour, K., Almoamari, H., El-Affendi, M. A., Al-Tamimi, B. N., Albalwy, F., & Hussain, A. (2023). Arabic Sentiment Analysis Based on Word Embeddings and Deep Learning. Computers, 12(6), Article 126. https://doi.org/10.3390/computers12060126Social media networks have grown exponentially over the last two decades, providing the opportunity for users of the internet to communicate and exchange ideas on a variety of topics. The outcome is that opinion mining plays a crucial role in analyzi... Read More about Arabic Sentiment Analysis Based on Word Embeddings and Deep Learning.
Interactive Effect of Learning Rate and Batch Size to Implement Transfer Learning for Brain Tumor Classification (2023)
Journal Article
Usmani, I. A., Qadri, M. T., Zia, R., Alrayes, F. S., Saidani, O., & Dashtipour, K. (2023). Interactive Effect of Learning Rate and Batch Size to Implement Transfer Learning for Brain Tumor Classification. Electronics, 12(4), Article 964. https://doi.org/10.3390/electronics12040964For classifying brain tumors with small datasets, the knowledge-based transfer learning (KBTL) approach has performed very well in attaining an optimized classification model. However, its successful implementation is typically affected by different... Read More about Interactive Effect of Learning Rate and Batch Size to Implement Transfer Learning for Brain Tumor Classification.
A Novel Hierarchical Extreme Machine-Learning-Based Approach for Linear Attenuation Coefficient Forecasting (2023)
Journal Article
Varone, G., Ieracitano, C., Çiftçioğlu, A. Ö., Hussain, T., Gogate, M., Dashtipour, K., Al-Tamimi, B. N., Almoamari, H., Akkurt, I., & Hussain, A. (2023). A Novel Hierarchical Extreme Machine-Learning-Based Approach for Linear Attenuation Coefficient Forecasting. Entropy, 25(2), Article 253. https://doi.org/10.3390/e25020253The development of reinforced polymer composite materials has had a significant influence on the challenging problem of shielding against high-energy photons, particularly X-rays and γ-rays in industrial and healthcare facilities. Heavy materials’ sh... Read More about A Novel Hierarchical Extreme Machine-Learning-Based Approach for Linear Attenuation Coefficient Forecasting.
DNet-CNet: A novel cascaded deep network for real-time lane detection and classification (2022)
Journal Article
Zhang, L., Jiang, F., Yang, J., Kong, B., Hussain, A., Gogate, M., & Dashtipour, K. (2023). DNet-CNet: A novel cascaded deep network for real-time lane detection and classification. Journal of Ambient Intelligence and Humanized Computing, 14, 10745-10760. https://doi.org/10.1007/s12652-022-04346-2Robust understanding of the lane position and type is essential for changing lanes in autonomous vehicles. However, accomplishing this task in real time with high level of precision is not trivial. In this paper, we propose a novel cascaded deep neur... Read More about DNet-CNet: A novel cascaded deep network for real-time lane detection and classification.
Arabic sentiment analysis using dependency-based rules and deep neural networks (2022)
Journal Article
Diwali, A., Dashtipour, K., Saeedi, K., Gogate, M., Cambria, E., & Hussain, A. (2022). Arabic sentiment analysis using dependency-based rules and deep neural networks. Applied Soft Computing, 127, Article 109377. https://doi.org/10.1016/j.asoc.2022.109377With the growth of social platforms in recent years and the rapid increase in the means of communication through these platforms, a significant amount of textual data is available that contains an abundance of individuals’ opinions. Sentiment analysi... Read More about Arabic sentiment analysis using dependency-based rules and deep neural networks.
Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: Observational Study (2022)
Journal Article
Hussain, Z., Sheikh, Z., Tahir, A., Dashtipour, K., Gogate, M., Sheikh, A., & Hussain, A. (2022). Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: Observational Study. JMIR Public Health and Surveillance, 8(5), Article e32543. https://doi.org/10.2196/32543Background:
The roll-out of vaccines for SARS-CoV-2 in the United Kingdom, started in December 2020. Uptake has been high, and there has been a subsequent reduction in infections, hospitalisations and deaths in vaccinated individuals. However, vacci... Read More about Artificial intelligence-enabled social media analysis for pharmacovigilance of COVID-19 vaccinations in the United Kingdom: Observational Study.