Alan Boyde
A distinctive patchy osteomalacia characterises Phospho1
-deficient mice
Boyde, Alan; Staines, Katherine A.; Javaheri, Behzad; Millan, Jose Luis; Pitsillides, Andrew A.; Farquharson, Colin
Authors
Katherine A. Staines
Behzad Javaheri
Jose Luis Millan
Andrew A. Pitsillides
Colin Farquharson
Abstract
The phosphatase PHOSPHO1 is involved in the initiation of biomineralisation. Bones in Phospho1 KO mice show histological osteomalacia with frequent bowing of long bones and spontaneous fractures: they contain less mineral, with smaller mineral crystals. However, the consequences of Phospho1 ablation on the microscale structure of bone are not yet fully elucidated. Tibias and femurs obtained from wild-type and Phospho1 null (KO) mice (25-32 week-old) were embedded in PMMA, cut and polished to produce near longitudinal sections. Block surfaces were studied using 20kV backscattered-electron (BSE) imaging, and again after iodine staining to reveal non-mineralised matrix and cellular components. For 3D characterisation, we used x-ray microtomography. Bones opened with carbide milling tools to expose endosteal surfaces were macerated using an alkaline bacterial pronase enzyme detergent, 5% hydrogen peroxide and 7% sodium hypochlorite solutions to produce 3D surfaces for study with 3D BSE scanning electron microscopy. Extensive regions of both compact cortical and trabecular bone matrix in Phospho1 KO mice contained no significant mineral and/or showed arrested mineralisation fronts, characterised by a failure in the fusion of the calcospherite-like, separately mineralising, individual micro-volumes within bone. Osteoclastic resorption of the uncalcified matrix in Phospho1 KO mice was attenuated compared with surrounding normally-mineralised bone. The extent and position of this aberrant biomineralisation varied considerably between animals, contralateral limbs and anatomical sites. The most frequent manifestation lay, however, in the nearly complete failure of mineralisation in the bone surrounding the numerous transverse blood vessel canals in the cortices.
Citation
-deficient mice. Journal of Anatomy, 231(2), 298-308. https://doi.org/10.1111/joa.12628
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 23, 2017 |
Online Publication Date | Jul 23, 2017 |
Publication Date | Jul 23, 2017 |
Deposit Date | Mar 28, 2017 |
Publicly Available Date | Jul 24, 2018 |
Journal | Journal of Anatomy |
Print ISSN | 0021-8782 |
Electronic ISSN | 1469-7580 |
Publisher | Wiley |
Peer Reviewed | Peer Reviewed |
Volume | 231 |
Issue | 2 |
Pages | 298-308 |
DOI | https://doi.org/10.1111/joa.12628 |
Keywords | backscattered-electron imaging; biomineralisation; osteoid; osteomalacia; PHOSPHO1 |
Public URL | http://researchrepository.napier.ac.uk/Output/821459 |
Contract Date | Mar 28, 2017 |
Files
A distinctive patchy osteomalacia characterises phsopho1 deficient mice
(2.2 Mb)
PDF
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search