Skip to main content

Research Repository

Advanced Search

Towards efficient IoT communication for smart agriculture: A deep learning framework

Alturif, Ghada; Saleh, Wafaa; El-Bary, Alaa A.; Osman, Radwa Ahmed

Authors

Ghada Alturif

Alaa A. El-Bary

Radwa Ahmed Osman



Abstract

The integration of IoT (Internet of Things) devices has emerged as a technical cornerstone in the landscape of modern agriculture, revolutionising the way farming practises are viewed and managed. Smart farming, enabled by interconnected sensors and technologies, has surpassed traditional methods, giving farmers real-time, granular information into their farms. These Internet of Things devices are responsible for collecting and sending greenhouse data (temperature, humidity, and soil moisture) for the required destination, to provide a comprehensive awareness of environmental factors critical to crop growth. Therefore, ensuring that the received data are accurate is a challenge, thus this paper investigates the optimization of Agriculture IoT communication, proposing a complete strategy for improving data transmission efficiency within smart farming ecosystems. The proposed model intends to maximize energy efficiency and data throughput in the context of essential agricultural factors by using Lagrange optimization and a Deep Convolutional Neural Network (DCNN). The paper focus on the ideal communication required distance between IoT sensors that measure humidity, temperature, and water levels and central control systems. The investigation emphasizes the critical necessity of these data points in guaranteeing crop health and vitality. The proposed technique strives to improve the performance of agricultural IoT communication networks through the integration of mathematical optimization and cutting-edge deep learning. This paradigm change emphasizes the inherent link between precise achievable data rate and energy efficiency, resulting in resilient agricultural ecosystems capable of adjusting to dynamic environmental conditions for optimal crop output and health.

Citation

Alturif, G., Saleh, W., El-Bary, A. A., & Osman, R. A. (2024). Towards efficient IoT communication for smart agriculture: A deep learning framework. PLOS ONE, 19(11), Article e0311601. https://doi.org/10.1371/journal.pone.0311601

Journal Article Type Article
Acceptance Date Sep 21, 2024
Online Publication Date Nov 21, 2024
Publication Date 2024
Deposit Date Nov 25, 2024
Publicly Available Date Nov 25, 2024
Journal PLOS ONE
Print ISSN 1932-6203
Publisher Public Library of Science
Peer Reviewed Peer Reviewed
Volume 19
Issue 11
Article Number e0311601
DOI https://doi.org/10.1371/journal.pone.0311601

Files

Towards efficient IoT communication for smart agriculture: A deep learning framework (5.3 Mb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.





You might also like



Downloadable Citations