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Abstract

The integration of IoT (Internet of Things) devices has emerged as a technical cornerstone

in the landscape of modern agriculture, revolutionising the way farming practises are viewed

and managed. Smart farming, enabled by interconnected sensors and technologies, has

surpassed traditional methods, giving farmers real-time, granular information into their

farms. These Internet of Things devices are responsible for collecting and sending green-

house data (temperature, humidity, and soil moisture) for the required destination, to provide

a comprehensive awareness of environmental factors critical to crop growth. Therefore,

ensuring that the received data are accurate is a challenge, thus this paper investigates the

optimization of Agriculture IoT communication, proposing a complete strategy for improving

data transmission efficiency within smart farming ecosystems. The proposed model intends

to maximize energy efficiency and data throughput in the context of essential agricultural

factors by using Lagrange optimization and a Deep Convolutional Neural Network (DCNN).

The paper focus on the ideal communication required distance between IoT sensors that

measure humidity, temperature, and water levels and central control systems. The investi-

gation emphasizes the critical necessity of these data points in guaranteeing crop health

and vitality. The proposed technique strives to improve the performance of agricultural IoT

communication networks through the integration of mathematical optimization and cutting-

edge deep learning. This paradigm change emphasizes the inherent link between precise

achievable data rate and energy efficiency, resulting in resilient agricultural ecosystems

capable of adjusting to dynamic environmental conditions for optimal crop output and health.

Introduction

Internet of Things (IoT)-based wireless technologies have grown significantly in a number of

industries in recent years. IoT is a network that enables autonomous communication between

physical objects, machinery, sensors, and other things [1, 2]. Wireless devices are being used in
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the agriculture sector to use modern technology and improve cost management and farming

productivity [3, 4]. Smart IoT devices are used in precision agriculture to monitor crop condi-

tions at different growth stages and for remote sensing [5, 6]. Agriculture, which emphasizes

the need of efficiently managing the water resources for plants, crops, and ensuring the survival

of agricultural land, is one of the most important economic sectors in many countries [7, 8].

When it comes to using precision agriculture, one of the most popular technologies is sen-

sor systems [9]. Utilising the data aggregation and transmission capabilities of sensors, remote

sensing approaches have begun to communicate with Internet of Things devices for autono-

mous activities. Technologies include transportation, healthcare, the military, mobile phones,

and home appliances are made possible by a number of real-time scenarios investigating

machine learning approaches with sensors [10, 11]. Many environmental changes in the mod-

ern period impact crop and field conditions; IoT-based technologies help farmers increase

productivity while reducing expenditures. The growth of smart agriculture is supported by the

integration of current wireless communications technologies with cloud platforms, which may

raise production productivity and improve product quality [12, 13].

However, in terms of sensing, identification, transmission, monitoring, and feedback capa-

bilities, agriculture-related operations can be correctly carried out utilising a more dependable

and sustainable method [14]. Network integrity is achieved and authentic functionalities are

performed in a distributed way by secured technologies [15]. However, effective and light-

weight communication paradigms require agriculture systems to have strong machine learn-

ing model functionalities. Until it is received on authorized storage and processing systems,

the private agriculture data must be reliable and shielded from unwanted access [16]. It worth

be mentioned the importance of fifth-generation (5G) networks ushers in a strong strategy for

IoT in different situations [17]. Several 5G-enabled strategies have been given to improve the

capabilities of IoT devices different circumstances [18, 19]. Furthermore, machine learning

and artificial intelligence optimization algorithms play a vital role in increasing system perfor-

mance by providing different solutions for models with a variety of characteristics and sectors

[20, 21]. These advancements strengthen communication networks, assuring the rapid and

dependable flow of critical data for timely and effective response.

IoT devices in smart agriculture often send data to the gateway or other places, sharing the

5G spectrum with D2D or cellular user equipment (CUE) connection. Interference may arise

due to this shared spectrum, which could affect the dependability and efficiency of IoT connec-

tivity. Interference in agricultural settings can result in data integrity being compromised,

which can impact important decisions about crop management and access to resources. In

order to improve the effectiveness and reliability of IoT communication in smart agriculture,

this work suggests an novel 1D-CNN and Lagrange optimization-based approach. In order to

provide a reliable and efficient transmission of agricultural data, the main goal is to reduce

interference difficulties at the gateway or destination. Among this article’s major contributions

are:

• A Lagrange optimization problem is built in order to determine the communication reliabil-

ity of IoT devices and Gateway in smart agriculture. For increased IoT communication effi-

ciency, this method uses a one-dimensional convolutional neural network (1D-CNN)

• The suggested approach, which is especially designed for use in smart agriculture applica-

tions, attempts to maximize communication inside IoT networks. In order to guarantee the

dependable transfer of data under a variety of environmental circumstances, this optimiza-

tion entails figuring out the required distance between IoT devices and Gateways. Further-

more, other variables that impact system performance are taken into account as alternative
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parameters. These variables include path loss, the necessary signal-to-interference-plus-

noise ratio (SINRth), transmission power, and the existence of possible interfering devices.

• IoT transmission devices can anticipate the ideal transmission distance between IoT devices

and Gateways using a deep learning model that takes into consideration channel circum-

stances. This predictive feature ensures that patient data is received accurately and reliably in

smart agriculture.

• The usefulness of the suggested technology in smart agriculture is assessed by examining the

achievable data rate and energy efficiency across various environmental factors. This evalua-

tion took into account transmission power, needed signal-to-interference-plus-noise ratio

(SINRth), and different interference transmission ranges. These findings contribute to the

optimisation of IoT networks in agricultural contexts.

The structure of the paper is as follows: The details of the the proposed strategy are revealed

after related work. Next, the the analytical and experimental studies for the proposed strategy

are examined. Finally, a summary wraps up the paper.

Related work

IoT communication is important since it allows for smooth connectivity across numerous

devices, sensors, and agricultural equipment. This network’s allows for real-time data trans-

mission, providing farmers with vital insights for precision farming, resource optimisation,

and better decision-making. In smart farming, [22] developed a machine learning-based smart

optimisation model for reliable and quality-aware sustainable agriculture. It optimised net-

work parameters using intelligent devices, performance analysis, and blockchain-based secu-

rity, which were proven through simulations and testing. Furthermore, [23] used IoT

technologies to improve smart agriculture by suggesting optimised smart irrigation systems.

Simulations using Network Simulator-2 (NS2) using Hierarchy Shuffled Shepherd Clustering

(HSSC) and Emperor Penguin Jellyfish Optimizer (EPJO) revealed significant gains in energy

efficiency and network lifetime when compared to previous approaches. Additionally, [24]

proposed an Internet of Things-based smart agricultural system for India, with a focus on

autonomous irrigation and insect detection. It accurately anticipated water needs and identi-

fied plant illnesses using machine learning techniques, obtaining an 84% accuracy. Moreover,

[25] examined how IoT improves smart farming by monitoring soil and detecting pests with

wireless sensors. For dependable information dispersion, the suggested IoT-based Wireless

Sensor Network (WSN) prioritised efficient data collecting and cluster head selection.

In terms of energy efficiency for IoT networks, particularly smart agriculture network. The

study presented in [26] looked at rural farms’ energy inefficiency as well as the sluggish adop-

tion of renewable energy and resource management systems. Current renewable energy

sources have been deemed insufficient for effective energy management. The report described

a developed system that was applied in a farm in central Portugal, with an emphasis on inte-

grated energy control. Solar harvesting and multi-access edge computing (MEC) were intro-

duced in [27] for long-term monitoring in IoT-based smart agriculture. It improved network

computations and energy efficiency by optimising resource scheduling and computation off-

loading to maximize capacity under solar energy constraints. Furthermore, [28] noted con-

cerns about increased energy import dependency in agriculture and emphasises the

importance of resource and energy allocation for improved productivity. The suggested naïve

multi-phase resource allocation algorithm seeks to improve energy efficiency in dynamic agri-

cultural situations. Additionally, [29] proposed a complete methodology for interference
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reduction in smart homes, emphasizing the confluence of deep learning and mathematical

optimization to improve data reception reliability.

A novel and secure method for obtaining data from Internet of Things devices is proposed

in [30]. SEED enabled improved throughput and energy efficiency in contrast to current meth-

odologies by using MD5 hashing to assure data integrity and fixing network difficulties via

aggregator node upgrades. Furthermore, [31] examined data transfer challenges and offered

an energy-efficient Massive MIMO-NOMA IoT network for communications beyond 5G. The

proposed method outperformed previous algorithms in terms of user fairness, convergence,

and energy efficiency by employing sequential convex approximation and fractional program-

ming. In addition, [32] proposed an interference control strategy to optimise 5G cellular net-

works and IoT. It improved crucial QoS measures such as energy economy and system

reliability by decreasing interference via Lagrange optimisation, Moreover, [33] addressed

interference concerns in the coexistence of 5G and IoT. It suggested a distributed deep learn-

ing model for optimising communication distances, improving throughput and energy effi-

ciency while decreasing interference. Furthermore, [34] suggested a method for improving

IoE network performance through Lagrange optimization and deep learning. It optimized

transmission power for efficiency and throughput, while minimizing interference. A deep

learning network predicted optimal transmission power using Lagrange optimization data,

which was validated by testing.

This study addresses a crucial crop monitoring challenge in order to improve the IoT net-

work for smart agriculture. The goal is to use the Internet of Things (IoT) to improve connec-

tivity between farmers and agricultural systems through effective communication. In

particular, the ideal range for Internet of Things communication is established when there is a

chance of interference from other devices using the same frequency range. The goal is to pin-

point the necessary components and setups to enhance IoT connectivity in intelligent farming.

The suggested approach combines a deep learning model with an analytical optimization tech-

nique to overcome this difficulty. The method teaches agricultural devices to dynamically

modify their proximity for optimal monitoring by utilizing a distributed deep learning model

within the IoT network. A comparative analysis highlighting the unique characteristics of the

proposed model over previous research efforts is shown in Table 1.

Proposed model

This section presents an analytical optimization technique that outlines a recommended

approach to enhance the gateway-IoT sensor connection in smart farming. Next, a strong deep

neural network architecture is shown, meant for real-world implementation in Internet of

Things networks, validating the dataset generated by the analytically proposed model.

System model and problem formulation

For the suggested approach, it is assumed that a smart farm consists of numerous IoT sensors

are installed throughout the smart farm to monitor environmental factors such as humidity,

temperature, and water levels. These sensors wirelessly transfer the collected data to a central

IoT gateway. IoT gateway acts as a hub that aggregates data from all IoT sensors. It then pro-

cesses this data locally and transmits it to remote servers or the cloud for further analysis and

decision-making. As shown in Fig 1, the spectrum where IoT-sensors send data is shared by C
number of CUEs, base station (BS), D number of D2D, which consists of transmitting devices

(Dtx) and receiving devices (Drx), and V number of V2V, which consists of transmitting vehi-

cles (Vtx) and receiving vehicles (Vrx). CUEs are typical mobile phones or communication

devices that link to a traditional cellular service provider’s base station (BS). CUEs and IoT
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Table 1. Comparison between different related works and the proposed model.

Technique used Optimization problem Deep learning

technique

Metric for system evaluation Investigation scenario

[22] Machine learning and

blockchain-based security

principles

Smart optimization model

for reliable and quality-aware

sustainable agriculture

N/A Network parameters (e.g.,

communication interference)

Validation through simulations

and experiments in smart farming

systems

[23] Hierarchy Shuffled

Shepherd Clustering

(HSSC) and Emperor

Penguin Jellyfish

Optimizer (EPJO)

Optimized intelligent smart

irrigation systems for energy

management

N/A Energy consumption, network

lifetime, and delay

Validation through simulation on

Network Simulator-2 (NS2) and

comparison with conventional

methods

[24] IoT-based smart farming

system with machine

learning

Automatic irrigation and

plant disease detection

K-Nearest

Neighbour (K-NN)

and Support Vector

Machine (SVM)

Classification accuracy (84%) Monitoring, analyzing, assessing,

and controlling agricultural fields

for irrigation and disease

detection

[25] IoT-based WSN

framework with signal-to-

noise ratio (SNR) and

linear congruential

generator

Reliable and efficient

information diffusion in

smart agriculture

N/A System throughput (16.3%

improvement), packet drop ratio

(36.3% reduction), network

latency (12.4% reduction), energy

consumption (18% reduction),

and routing overheads (19%

reduction)

Simulation of the proposed

framework compared to other

solutions

[26] Integrated energy control

with renewable energy

sources

Energy management and

reduction of grid energy

consumption

N/A 83.2% reduction in energy from

the grid, 5527 kg CO2 savings,

and return on investment (ROI)

of 8 years

Implementation and evaluation of

a solution in a farm in central

Portugal

[27] Solar harvesting and

multiaccess edge

computing (MEC)

Resource scheduling and

computation offloading

strategy to maximize

computation capacity under

solar energy constraints

N/A Efficiency in using solar energy,

network energy efficiency, and

sustainable agricultural WSN

performance

Simulation of the proposed

multiply-iterated decoupling

optimization algorithm for solar-

powered MEC-enabled WSNs

[28] Naive multi-phase

resource allocation

algorithm

Resource allocation to

enhance agricultural energy

efficiency

N/A Energy efficiency and effective

utilization of agricultural

resources

Addressing computational

complexities in traditional data

fusion algorithms for dynamic

agricultural environments

[29] Adaptive communication

protocols and

interference management

algorithms

Minimizing interference in

smart home environments by

optimizing resource

allocation

Deep learning for

predicting and

adapting to

interference patterns

Data reception performance,

signal quality, and robustness in

various smart home situations

Evaluation of a hybrid strategy

combining deep learning with

optimization models for

interference reduction in smart

homes

[30] Secure and energy-

efficient data-collection

method (SEED)

Path discovery, fault

tolerance, congestion, and

load balancing in IoT

networks

N/A Energy efficiency, data integrity,

throughput

Evaluation of SEED method using

MD5 hashing for data integrity

and a unique path discovery

algorithm to improve network

performance

[31] Energy-efficient Massive

MIMO-NOMA IoT

network

Power consumption (non-

convex function), quality of

service

N/A Convergence, energy efficiency,

user fairness

Implementation and evaluation of

Massive MIMO-NOMA for B5G

IoT networks, addressing power

consumption and quality of

service with iterative branch and

bound techniques

[32] Interference control

model using Lagrange

optimization

Interference reduction,

energy efficiency, reliability

N/A System reliability, throughput,

energy efficiency

Control interference in IoT and

cellular networks, optimizing

performance metrics through

Lagrange optimization in 5G

systems

(Continued)
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Table 1. (Continued)

Technique used Optimization problem Deep learning

technique

Metric for system evaluation Investigation scenario

[33] Interference avoidance

distributed deep learning

model

Interference reduction,

throughput maximization,

energy efficiency

Deep learning for

interference

prediction

Mean absolute error (MAE), root

mean squared error (RMSE),

system throughput, energy

efficiency

Predicting optimal distances for

IoTD-D, CUE-IoTG, BS-IoTD,

and IoTG-CUE to improve

throughput and energy efficiency

while managing interference

[34] Lagrange Optimization

and distributed deep

learning model

Power optimization,

interference control, energy

efficiency, system throughput

Deep learning for

transmission power

prediction

Energy efficiency (EE), overall

system throughput (S)

Predicting optimal transmission

power for uplink and downlink

data communication to enhance

energy efficiency and system

throughput while controlling

interference

Proposed

model

Lagrange Optimization

and Deep Convolutional

Neural Network (DCNN)

Communication distance

optimization, energy

efficiency, data throughput

Deep Convolutional

Neural Network

(DCNN)

Energy efficiency, data

throughput

Maximizing energy efficiency and

data throughput in agricultural

IoT communication by

optimizing the communication

distance between sensors and

central control systems

https://doi.org/10.1371/journal.pone.0311601.t001

Fig 1. Proposed system model.

https://doi.org/10.1371/journal.pone.0311601.g001
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sensors share the same frequency range of operation. D2D communication helps lower net-

work latency and congestion. Similar to D2D, V2V communication involves transmitting

vehicles (Vtx) and receiving vehicles (Vrx) that exchange data directly. This setup is useful for

applications involving autonomous or connected vehicles within the farm. This includes

devices labelled as transmitting devices (Dtx) and receiving devices (Drx) that communicate

directly with each other without routing through the BS. Communication scenarios include:

(i) transmitting data from IoT sensors to an IoT gateway; (ii) regular cellular communication

in which CUEs connect with BS; (iii) Dtx and Drx communicating D2D; and (iv) Vtx and Vrx

communicating V2V. When several devices use the same spectrum and broadcast at the same

time, interference in the system results. Interference may arise, for instance, if data is transmit-

ted by a CUE, Vtx, or Dtx in the same frequency that IoT sensors use to talk to the gateway.

This transmission overlap has the potential to lower data communication reliability and deteri-

orate signal quality. The suggested model uses a one-dimensional Convolutional Neural Net-

work (1D-CNN) in conjunction with Lagrange optimisation to dynamically modify important

communication parameters as transmission power, distances between devices, and signal-to-

interference-plus-noise ratio (SINR). With the help of this adaptive technique, network perfor-

mance may be optimised in real time, lowering interference and improving the dependability

of IoT sensor data transfer. The suggested methodology’s main objective is to maximise the

IoT system’s overall performance in smart farms. This is accomplished by optimizing the

transmission power and other characteristics of D2D devices, V2V networks, CUEs, and IoT

sensors in order to maximise Energy Efficiency (EE). The optimisation seeks to minimise

power consumption while achieving the necessary SINR. Moreover, increasing the overall pos-

sible data throughput through the optimization of communication channels between gateways,

IoT sensors, and other devices. The model accounts for a number of factors, such as interfer-

ence levels, transmission power limitations, and SINR, to guarantee the best possible data

throughput in a variety of environmental scenarios. The maximum energy efficiency (EE) and

maximum achievable data rate (R) can be expressed as:

Maximize
XI

i¼1

XC

c¼1

XD

d¼1

XV

v¼1

EEi;c;d;v

Subject to EEi;c;d;v≔ f1ðSINRIG; PC; PD; PVÞ

fSINRIG � SINRth; PC � PCmax; PD � PDmax; PV � PVmaxg

ð1Þ

Maximize
XI

i¼1

XC

c¼1

XD

d¼1

XV

v¼1

Ri;c;d;v

Subject to Ri;c;d;v≔ f2ðSINRIG; PC; PD; PVÞ

fSINRIG � SINRth; PC � PCmax; PD � PDmax; PV � PVmaxg

ð2Þ

In the context of the optimization problem, the total achievable data rate is denoted by

Ri,c,d,v, while the system energy efficiency is denoted by EEi,c,d,v. These measures are related to

the v − th path between V2V, the d − th path between D2D devices, the k − th path between

CUE and BS, and the i − th path between IoT-sensors and gateways. The symbols SINRth and

SINRIG represent the required system signal-to-interference-plus-noise ratio and signal-to-

interference-plus-noise ratio for the Internet of Things to gateway connection, respectively.

PLOS ONE Optimizing IoT for smart agriculture

PLOS ONE | https://doi.org/10.1371/journal.pone.0311601 November 21, 2024 7 / 27

https://doi.org/10.1371/journal.pone.0311601


Similarly, PC and PCmax indicate the CUE’s transmission power and maximum transmission

power, whereas PD and PDmax reflect the D2D communication link’s transmission power and

maximum transmission power. Finally, PV and PVmax signify the maximum transmission

power and transmission power of the V2V communication link, respectively.

Non-orthogonal multiple access (NOMA) is chosen as the appropriate access method in

the proposed paradigm [35, 36] to facilitate the broad implementation of IoT-sensors, CUE,

D2D, and V2V for smart farms and to allow them concurrent access to the channel. Further-

more, the proposed model assumes a Rayleigh fading channel with additive white Gaussian

noise (AWGN) [37]. Furthermore, the model assumes statistical independence between the

channel fading coefficients for different transmission connections. As a result, the network’s

energy efficiency (EE) and possible data rate (R) can be stated as follows:

EE ¼
RIG

PI þ Po
þ

RCB
PC þ Po

þ
RDDrx
PD þ Po

þ
RVVrx
PV þ Po

ð3Þ

R ¼ RIG þ RCB þ RDDrx þ RVVrx ð4Þ

where RIG, RCB, RDDrx , and RVVrx , respectively, represent the achievable data rates for IoT-sen-

sors and gateways, CUE-BS link, D2D communication connection, and V2V communication

link. The variables PI and Po denote the IoT transmission power and internal circuit power

consumption. As a result, the expressions RIG, RCB, RDDrx , and RVVrx are:

RIG ¼ B log2
1þ

PIHIG
PK

k¼1
PCHCkG

þ
PD

d¼1
PDHDdG

þ
PV

v¼1
PVHVvG

þ N

 !

ð5Þ

RCB ¼ B log2
1þ

PCHCB
PI

i¼1
PIHIiB

þ
PD

d¼1
PDHDdB

þ
PV

v¼1
PVHVvB

þ N

 !

ð6Þ

RDDrx ¼ B log2
1þ

PDHDDrxPI
i¼1

PIHIiDrx
þ
PK

k¼1
PCHCkDrx

þ
PV

v¼1
PVHVvDrx

þ N

 !

ð7Þ

RVVrx ¼ B log2
1þ

PVHVVrxPI
i¼1

PIHIiVrx
þ
PK

k¼1
PCHCkVrx

þ
PD

d¼1
PDHDdVrx

þ N

 !

ð8Þ

where the channel gain coefficient between IoT-sensors and gateways (G), Cellular equipment

deices (CUE) and gateways, transmitted device (Dtx) and gateways, and transmitted vehicle

(Vtx) and gateways areHIG,HCkG,HDdG andHVvG, respectively. The channel gain coefficient

between Cellular equipment deices (CUE) and base station (BS), IoT-sensors and base station

(BS), transmitted device (Dtx) and base station (BS), and transmitted vehicle (Vtx) and base

station (BS) are represented byHCB,HIiB,HDdB andHVvB, respectively. The channel gain coef-

ficient between transmitted device (Dtx) and receiving device (Drx), IoT-sensors and receiving

device (Drx), Cellular equipment deices (CUE) and receiving device (Drx), and transmitted

vehicle (Vtx) receiving device (Drx) are represented by HDDrx
, HIiDrx

, HCkDrx
andHVvD, respec-

tively. The channel gain coefficient between transmitted vehicle (Vtx) and receiving vehicle

(Vrx), IoT-sensors and receiving vehicle (Vrx), CUE and receiving vehicle (Vrx), and Dtx and

receiving vehicle (Vrx) are represented byHVV, HIiVrx
, HCkVrx

andHDdVrx
, respectively. In this

case, N and B represent the noise power and channel system bandwidth, respectively.
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The main goal of the proposed methodology is to maximize the total achievable data rate

(R) and overall energy efficiency (EE) of the Internet of Things network in smart agriculture

under different environmental scenarios, as demonstrated by Eqs 1 and 2. Under the restric-

tion that the signal-to-interference-plus-noise ratio (SINR) between Internet of Things devices

and gateways (SINRIG) must either meet or above a predetermined threshold (SINRth), Energy

Efficiency (EE) is optimized. Furthermore, the maximum limits (PDmax, PDmax, PVmax) for the

transmission powers of the Cellular User Equipment (CUE), Device-to-Device (D2D) links,

and Vehicle-to-Vehicle (V2V) links must be adhered to. Furthermore, Similar restrictions

apply to the maximum achievable data rate optimization as they do to energy efficiency,

guaranteeing dependable communication and peak network performance. The Lagrange mul-

tipliers method was applied to the optimization problems for EE and R in order to accommo-

date these limitations. The following Eqs 1 and 2 is the formulation of the Lagrangian

functions for the optimization problems:

LðSINRIG; PC; PD; PV ; l1; l2; l3; l4Þ ¼ EEþ l1ðSINRIG � SINRthÞ

þl2ðPC � PCmaxÞ þ þl3ðPD � PDmaxÞ þ l4ðPV � PVmaxÞ:
ð9Þ

LðSINRIG; PC; PD; PV ; m1; m2; m3; m4Þ ¼ Rþ m1ðSINRIG � SINRthÞ

þm2ðPC � PCmaxÞ þ m3ðPD � PDmaxÞ þ m4ðPV � PVmaxÞ:
ð10Þ

The non-negative Lagrangian multipliers are designated by the symbols λ1, λ2, λ3, λ4, μ1, μ2,

μ3, and μ4. The values of λ1, λ2, λ3, and λ4 must be determined by calculating the derivative of

Eq 9 with reference to PI, PC, PD, and PV to fulfil the conditions of the optimization problem

for energy efficiency (EE). These multipliers help to adjust the optimization problem by penal-

izing any violation of the constraints. An increased Lagrange multiplier value signifies a more

robust impact of the associated constraint on the optimization procedure. As a result, λ1, λ2,

λ3, and λ4 can be calculated as follows:

l1 ¼
B � X1

ðPI þ PoÞ
þ
B � log

2
ð1þ PI � X2Þ

ðPI þ PoÞ
2
� X2

þ
B � X3 � X4

ðPC þ PoÞ � X2

þ
B � X5 � X6

ðPD þ PoÞ � X2

þ
B � X7 � X8

ðPV þ PoÞ � X2

ð11Þ

l2 ¼
B � X1

ðPI þ PoÞ
�
PI
PK

k¼1
HckG
� X2

C
þ
B � log

2
ð1þ PC � X9Þ

ðPC þ PoÞ
2

�
B � X3 � X9

ðPC þ PoÞ

þ
B � X5 � X10

ðPD þ PoÞ
þ
B � X7 � X11

ðPV þ PoÞ
þ l1

PI
PK

k¼1
HCkG

� X2

C

 ! ð12Þ
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l3 ¼
B � X1

ðPI þ PoÞ
�
PI
PL

l¼1
HDdG

� X2

C
þ
B � X3 � X12

ðPC þ PoÞ
þ
B � log

2
ð1þ PDX13Þ

ðPD þ PoÞ
2

�
B � X5 � X13

ðPD þ PoÞ
þ
B � X7 � X14

ðPV þ PoÞ
þ l1

PI
PD

d¼1
HDdG

� X2

C

 ! ð13Þ

l4 ¼
B � X1

ðPI þ PoÞ
�
PI
PV

v¼1
HVvG

� X2

C
þ
B � X3 � X15

ðPC þ PoÞ
þ
B � X5 � X16

ðPD þ PoÞ
þ

B � log
2
ð1þ PVX17Þ

ðPV þ PoÞ
2

�
B � X7 � X17

ðPV þ PoÞ
þ l1

PI
PV

v¼1
HVvG

� X2

C

 ! ð14Þ

where

C ¼
XK

k¼1

PCHCkG
þ
XD

d¼1

PDHDdG
þ
XV

v¼1

PVHVvG
þ N;

X1 ¼

PK
k¼1

PCHCkG
þ
PD

d¼1
PDHDdG

þ
PV

v¼1
PVHVvG

þ N
PK

k¼1
PCHCkG

þ
PD

d¼1
PDHDdG

þ
PV

v¼1
PVHVvG

þ N þ PIHID

;

X2 ¼
HIG

PK
k¼1

PCHCkG
þ
PD

d¼1
PDHDdG

þ
PV

v¼1
PVHVvG

þ N
;

X3 ¼

PI
i¼1

PIHIiB
þ
PD

d¼1
PDHDdB

þ
PV

v¼1
PVHVvB

þ N
PI

i¼1
PIHIiB

þ
PD

d¼1
PDHDdB

þ
PV

v¼1
PVHVvB

þ N þ PCHCB

;

X4 ¼
PCHCB

PI
i¼1

HIiB

ð
PI

i¼1
PIHIiB

þ
PD

d¼1
PDHDdB

þ
PV

v¼1
PVHVvB

þ NÞ2
;

X5 ¼

PI
i¼1

PIHIiDrx
þ
PK

k¼1
PCHCkDrx

þ
PV

v¼1
PVHVvDrx

þ N
PI

i¼1
PIHIiDrx

þ
PK

k¼1
PCHCkDrx

þ
PV

v¼1
PVHVvDrx

þ N þ PDHDDrx

;
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X6 ¼
PDHDDrx

PI
i¼1

HIiDrx

ð
PI

i¼1
PIHIiDrx

þ
PK

k¼1
PCHCkDrx

þ
PV

v¼1
PVHVvDrx

þ NÞ2
;

X7 ¼

PI
i¼1

PIHIiVrx
þ
PK

k¼1
PCHCkVrx

þ
PD

d¼1
PDHDdVrx

þ N
PI

i¼1
PIHIiVrx

þ
PK

k¼1
PCHCkVrx

þ
PD

d¼1
PDHDdV

þ N þ PDHDDrx

;

X8 ¼
PVHVVrx

PI
i¼1

HIiVrx

ð
PI

i¼1
PIHIiVrx

þ
PK

k¼1
PCHCkVrx

þ
PD

d¼1
PDHDdVrx

þ NÞ2
;

X9 ¼
HCB

PI
i¼1

PIHIiB
þ
PD

d¼1
PDHDdB

þ
PV

v¼1
PVHVvB

þ N
;

X10 ¼
PDHDDrx

PK
k¼1

HCkDrx

ð
PI

i¼1
PIHIiDrx

þ
PK

k¼1
PCHCkDrx

þ
PV

v¼1
PVHVvDrx

þ NÞ2
;

X11 ¼
PVHVVrx

PK
k¼1

HCkVrx

ð
PI

i¼1
PIHIiVrx

þ
PK

k¼1
PCHCkVrx

þ
PD

d¼1
PDHDdVrx

þ NÞ2
;

X12 ¼
PBHCB

PL
l¼1

PDHDlB

ð
PI

i¼1
PIHIiB

þ
PD

d¼1
PDHDdB

þ
PV

v¼1
PVHVvB

þ NÞ2
;

X13 ¼
HDDrxPI

i¼1
PIHIiDrx

þ
PK

k¼1
PCHCkDrx

þ
PV

v¼1
PVHVvDrx

þ N
;

X14 ¼
PVHVVrx

PD
d¼1

HDdVrx

ð
PI

i¼1
PIHIiVrx

þ
PK

k¼1
PCHCkVrx

þ
PD

d¼1
PDHDdVrx

þ NÞ2
;

X15 ¼
PBHCB

PV
v¼1

PVHVvB

ð
PI

i¼1
PIHIiB

þ
PD

d¼1
PDHDdB

þ
PV

v¼1
PVHVvB

þ NÞ2
;

X16 ¼
PDHDDrx

PV
v¼1

PVHVvDrx

ð
PI

i¼1
PIHIiDrx

þ
PK

k¼1
PCHCkDrx

þ
PV

v¼1
PVHVvDrx

þ NÞ2
and

X17 ¼
HVVrxPI

i¼1
PIHIiVrx

þ
PK

k¼1
PCHCkVrx

þ
PD

d¼1
PDHDdVrx

þ N

The derivation of Eq 9 with respect to λ1, λ2, λ3, and λ4 yields the optimal required distance

(dIG) between IoT-sensors and gateways, the optimal required CUE interfere transmission

power (PC), the optimal required Dtx interfere transmission power (PD), and the optimal
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required Vtx interfere transmission power (PV). These can be found as:

dIG ¼
SINRthð

PK
k¼1

PCHCkG
þ
PD

d¼1
PDHDdG

þ
PV

v¼1
PVHVvG

þ NÞ
PI=plo

" #� 1=a

ð15Þ

where the path loss exponent and constant path loss are expressed by α and plo, respectively.

PC ¼ PCmax ð16Þ

PD ¼ PDmax ð17Þ

PV ¼ PVmax ð18Þ

The values of μ1, μ2, μ3, and μ4 can be found using the derivative of Eq 10 with regard to PI,
PC, PD, and PV in order to satisfy the constraint of the optimization problem for (R). Then, μ1,

μ2, μ3, and μ4 may represent as follows:

m1 ¼
B � X1 � X2 þ B � X3 � X4 þ B � X5 � X6 þ B � X7 � X8

X2

ð19Þ

m2 ¼ B � X1

PI
PK

k¼1
HCkG

� X2

C

 !

� B � X3 � X9 þ B � X5 � X10 þ B � X7 � X11

þ l1

PI
PK

k¼1
HCkG

� X2

C

 ! ð20Þ

m3 ¼ BX1

PI
PL

l¼1
HDdG

� X2

C

 !

þ B � X3 � X12 � B � X5 � X13 þ B � X7 � X14

þ l1

PI
PD

d¼1
HDdG

� X2

C

 ! ð21Þ

m4 ¼ BX1

PI
PV

v¼1
HVvG

� X2

C

 !

þ B � X3 � X15 þ B � X5 � X16 � B � X7 � X17

þ l1

PI
PV

v¼1
HVvG

� X2

C

 ! ð22Þ

The optimal required interference distance (dIG) between IoT-sensors and the gateway, the

optimal required CUE interfere transmission power (PC), the optimal required Dtx interfere

transmission power (PD), and the optimal required Vtx interfere transmission power (PV) can

all be obtained by deriving Eq 10 with respect to μ1, μ2, μ3, and μ4. This will make it possible to

optimize the overall attainable data rate (R), which may be calculated with the following
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formula:

dIG ¼
SINRthð

PK
k¼1

PCHCkG
þ
PD

d¼1
PDHDdG

þ
PV

v¼1
PVHVvG

þ NÞ
PI=plo

" #� 1=a

ð23Þ

PC ¼ PCmax ð24Þ

PD ¼ PDmax ð25Þ

PV ¼ PVmax ð26Þ

Dataset generation

The necessary datasets have been made available through MATLAB simulations, and the equa-

tions for the proposed model—which are described in Section —have been put into practice.

The simulation’s parameter values are displayed in Table 2. To improve communication

between IoT-sensors and gateway, the datasets will be utilized to train models that will be put

on all transmitting devices.

There are 44679 records in all. Each record contains a unique combination of these vari-

ables to represent the following: the distances between CUB and BS (dCB), Dtx and Drx

(dDDrx), and Vtx and Vrx (dVVrx); the necessary signal-to-interference-plus-noise-ratio thresh-

old (SINRth); the IoT device transmission power (PI), the CUE transmission power (PC), the

D2D transmission power (PD), and the V2V transmission power (PV) Fig 2 shows the Pearson

coefficients that illustrate the relationship between each input and output parameter. The

graph shows that EE has a substantial negative correlation with the PI, PC, PD, and PV parame-

ters, whereas the output dIG has a strong association with the dCB, dDDrx , and dVVrx parameters.

Furthermore, there isn’t much of a link between parameters R and the input parameters. Each

of these variables must be used to train the deep learning model, and the results section will

provide an explanation of the association’s significance.

Table 2. Simulation parameters.

Parameter Value

N -174 dBm/Hz [38]

B 10 Mbit/s [39]

α 4

PI 23 dBm [40]

PC 23 dBm [40]

PD 23 dBm [40]

PV 23 dBm [40]

SINRth 20 dB [40]

Pathloss between CUE and BS 148þ 40 log
2

dCB
km

� �

Pathloss between D2D link 128:1þ 37:6 log
2

dDD
km

� �

Pathloss between V2V link 128:1þ 37:6 log
2

dVV
km

� �

https://doi.org/10.1371/journal.pone.0311601.t002
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Proposed deep learning model

In this section, the suggested deep learning model is demonstrated and explained. Before add-

ing the variables to the recommended deep learning model, a normalization phase must be

completed in order to help with the learning of the model weights. Each variable is normalized

using the min-max scaling procedure before being incorporated to the model. From the final

dense layer, the eight input variables, dCB, dDDrx , dVVrx , SINRth, PI, PC, PD, and PV, are used to

derive the output parameters, dIG, EE, and R. The model has three distinct phases, namely

1D-CNN, flattening, and thick layers, as illustrated in Fig 3. The normalized input parameters

are processed by three 1D-CNN layers: one with a size 1 kernel and each with 64, 64, and 128

filters.

To maintain a constant width of the output matrix, each layer of the 1D-CNN produces

padded results. Next, a flattening layer receives the output from the third 1D-CNN and refor-

mats the dimension to prepare it for input into the dense layers. Regression is produced by six

dense layers that come after the flattening layer. Before choosing how many nodes to utilise for

the dense layers and how many filters to employ for the 1D-CNN, a grid search was utilised to

test out a number of options. The activation function for each hidden layer has been the Recti-

fied Linear Unit (ReLU). The grid search took activation function selection into consideration

and tested several methods for following the hidden layers in the proposed model. For optimal

results, the output of each hidden layer was input into an activation function known as a

parametric rectified linear unit, or PReLU.

The root mean square error (RMSE) and mean absolute error (MAE) loss function are the

objectives of the adaptive moment (Adam) optimization used in the proposed model. Adam’s

learning method allows him to acquire the required abilities. Whereas RMSE is the root square

of the average of the squared disparities between real and anticipated values, MAE measures

Fig 2. Pearson correlation coefficients of each input parameter (dCB, dDDrx
, dVVrx

, SINRth, PI, PC, PD and PV) and the output (dIG, EE and R).

https://doi.org/10.1371/journal.pone.0311601.g002
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the average difference between the actual and expected values. They can be referred to as these:

MAE ¼
Pn

j¼1
jyj � xjj
n

ð27Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1
ðyj � xjÞ

2

n

s

ð28Þ

where xj is the predicted value, yj is the actual value, and n is the total number of data points

Fig 3. Proposed deep learning model.

https://doi.org/10.1371/journal.pone.0311601.g003
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that were recorded. The experiments that were conducted in order to develop, validate, and

test the proposed model are covered in the section that follows.

Results and discussion

This section presents the performance of the suggested deep learning and analytical models.

Furthermore, the effectiveness of the suggested method was assessed in terms of achievable

data rate and improved energy efficiency using MATLAB and Python simulations. As seen in

Fig 4, the suggested deep learning model from section is assessed and put to the test. An 80%

train set and a 20% test set were created from the datasets. The needed dIG, EE, and R are

shown as the training and validation mean absolute errors in Fig 4(a)–4(c), respectively. Since

the results were not changing noticeably beyond epoch 100, all of these graphs demonstrate

that additional training was not necessary. Furthermore, Fig 4(d) shows nearly similar inde-

pendent training and validation errors for each output, indicating that the proposed model

was neither overfitted nor underfitted. It also shows how the independent training and valida-

tion mistakes loss eventually decrease and stabilise.

It has been assumed for the system evaluation that the transmission power of IoT-sensors

(PI), CUE (PC), D2D (PD), and V2V (PV) are equal, and that SINRth and the transmission dis-

tance are always changing. The interference transmission lengths between any interfere trans-

mitter and its destination (D2D, V2V, and CUE-BS connections) are shown in Fig 5 in

comparison to the necessary transmission length (dIG) between IoT-sensors and gateway (G)

for the deep learning and analytical models. Various values of SINRth, namely 5 dB, 15 dB, and

20 dB, have been investigated to evaluate the efficacy of the proposed model. Furthermore, it

has been assumed that the transmission power for all IoT-sensors and interfere devices, which

is 23 dBm, and the transmission distances between Dtx and Drx, as well as between Vtx and

Vrx, are 1/5 of the transmission distances between CUE and BS. In the worst case scenario,

high amounts of transmission power interference may affect the transfer data from IoT sen-

sors. For each SINRth supplied, and for each interfere transmission distance, as can be seen in

Fig 5, there exists an ideal necessary transmission distance between IoT-sensors and G (dIG) in

order to fulfil the required IoT system performance for both the analytical and deep learning

models. For example, when SINRth is 5 and the interference transmission distance is 100.7 m,

the optimal necessary transmission distance between IoT-sensors and G (dIG) for the analytical

and deep learning models, respectively, to meet IoT system performance is 103.399 m and

104.7424 m. On the other hand, with SINRth = 20, the interference transmission distance is

101 m for the analytical and deep learning models, and 44.3611 m for the optimal necessary

transmission distance between IoT-sensors and G (dIG). After comparing the two scenarios, it

can be concluded that increasing SINRth guarantees that the data will be sent across an efficient

communication channel and that the received data is reliable enough to support decision-

making while also reducing the required transmission distance between IoT-sensors and G.

(dIG).

The best transmission distance between IoT-sensors and the gateway (G) is found by evalu-

ating the system under various thresholds for the Signal-to-Interference-plus-noise-ratio

(SINRth) (5 dB, 10 dB, and 20 dB), taking into account the various transmission power levels of

IoT-sensors. It was believed that the transmission power of all interference is always equal to

the transmission power of IoT sensors (PI). Upon closer inspection, Fig 6 displays a notewor-

thy trend: an increase in the transmission power of IoT-sensors. This suggests that all interfer-

ing devices in the three SINRth circumstances are simultaneously seeing a rise in transmission
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Fig 4. Training and validation mean absolute error generated during training the proposed model.

https://doi.org/10.1371/journal.pone.0311601.g004

PLOS ONE Optimizing IoT for smart agriculture

PLOS ONE | https://doi.org/10.1371/journal.pone.0311601 November 21, 2024 17 / 27

https://doi.org/10.1371/journal.pone.0311601.g004
https://doi.org/10.1371/journal.pone.0311601


power. Surprisingly, for both analytical and deep learning models, IoT-sensors and gateways

(G) need a constant, optimal transmission distance in order to maintain system performance.

This statement highlights the system’s ability to maintain performance requirements over time

and how adaptable it is to variations in transmission power. It is also important to highlight

that an increase in the optimal transmission distance required between IoT-sensors and gate-

way (G) correlates with a drop in SINRth. This phenomena is necessary for precise and efficient

information transmission. In other words, the system compensates for SINRth dips by extend-

ing the transmission distance, which maintains effective information exchange and improves

the system’s overall dependability and efficiency in a range of conditions.

As previously noted, Fig 7 illustrates the relationship between the transmission power of

IoT-sensors and the overall energy efficiency of the system for the three distinct values of

SINRth. Here, the demonstrated decrease in energy efficiency with increasing IoT-sensors

transmission power for both the analytical and deep learning models is explained by a well

considered equivalency between IoT-sensors and interference transmission powers. This

hypothesis states that the power of interference transmission for both analytical and deep

Fig 5. Interference distance (m) vs required distance between IoT-sensors and gateway (dIG).

https://doi.org/10.1371/journal.pone.0311601.g005
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learning models increases in direct proportion to each rise in IoT-sensors transmission power,

resulting in a situation where both powers increase at the same time. This correlation intro-

duces an important trade-off in the system dynamics. On the one hand, increasing the trans-

mission power of IoT-sensors can help to improve signal strength and communication

dependability. Nevertheless, this surge also directly causes more interference, endangering the

overall efficacy of the system. It becomes evident that upholding this trade-off necessitates a

careful balance, emphasizing the need for strategic decision-making in the process of selecting

the optimal transmission power levels. From a practical perspective, this event highlights how

important it is to consider both the benefits of increased IoT-sensor transmission power as

well as the challenges posed by increased interference. System operators and designers are

responsible for managing this trade-off and determining an equilibrium that maximizes

energy savings without sacrificing the accuracy and dependability of information sent. As a

result, the observed drop in energy efficiency is a subtle signal that warrants additional

research to fully understand the complex interplay between power management and interfer-

ence control within the system framework.

Fig 6. IoT-sensors transmission power (PI) (dBm) required distance between IoT-sensors and gateway (dIG) (m).

https://doi.org/10.1371/journal.pone.0311601.g006
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By comparing the desired distance between IoT-sensors and G (dIG) with the effect of all

required SINRth, Fig 8 illustrates the efficacy and robustness of the proposed approach. Three

distinct interference distances (50, 100, and 250 metres) have been established in order to

assess the effectiveness of the suggested model. Additionally, it has been considered that all

interfere devices and IoT sensor transmission power sent data with a maximum interfere

transmission power of 23 dBm. In the worst scenario, IoT-sensor data transport may be

impacted by significant amounts of interference transmission power. There is an optimal nec-

essary transmission distance between IoT-sensors and G for both the analytical and deep

learning models, for each interfere transmission distance and for interference distance given,

in order to achieve the required system (SINRth) this is shown in Fig 8. For instance, the ideal

required transmission distance between IoT-sensors and G (dIG) for the analytical and deep

learning models, respectively, to fulfil desired system (SINRth), is 35.735 m and 36.562862 m

when SINRth is 12.2 dB and interference distance is 50 m. On the other hand, the optimum

necessary transmission distance for the analytical and deep learning models, respectively, is

68.8212 m and 69.39796 m for IoT-sensors and G (dIG), where the interference distance is 100

Fig 7. IoT-sensors transmission power (PI) (dBm) versus overall system energy efficiency (EE) (bit/J).

https://doi.org/10.1371/journal.pone.0311601.g007
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m for the same specified SINRth. It is feasible to conclude from a comparison of the two cases

that a transmission distance between IoT-sensors and G (dIG) is needed to accomplish the

desired SINRth. This guarantees that the information will be received with sufficient accuracy

and reliability and that it will be delivered via an effective communication route.

Figs 9 and 10 represent the correlation between the required signal-to-interference-plus-

noise-ratio (SINRth) and the overall energy efficiency of the system, as well as the correlation

between the required signal-to-interference-plus-noise-ratio (SINRth) and the overall achiev-

able data rate. As mentioned before, three distinct interference distance values have been con-

sidered. Fig 9, using either the analytical or deep learning model, shows that there is no

discernible change in the energy efficiency performance of the system when the interference

distance is increased with varying values of SINRth. Moreover, the same performance is

obtained for both analytical and deep learning models, as Fig 10 illustrates, suggesting that

increasing interference distance with different values of SINRth has no effect on the achievable

data rate (R) of the system. The findings displayed in Figs 9 and 10 corroborate the idea pre-

sented in Fig 8 that altering the transmission distance in light of interference distance knowl-

edge is one of the most crucial strategies for achieving the desired system performance. It is

demonstrated that variations in the required signal-to-interference-plus-noise-ratio (SINRth)

Fig 8. Required signal-to-interference-plus-noise-ratio (SINRth) versus required distance between IoT-sensors and gateway (dIG).

https://doi.org/10.1371/journal.pone.0311601.g008
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have minimal impact on the overall energy efficiency of the system. This resilience is proof of

the proactive adjusting mechanism of IoT sensors. By dynamically selecting transmission dis-

tances, these devices confirm that the system meets the predefined performance parameters,

hence validating the effectiveness of the previously established adaptive transmission method.

To prove the effectiveness of the proposed model, a comparison with an existing method

has been made [31]. A comparison between the proposed model and the model reported in

[31], which focuses on the relationship between transmission power and overall energy effi-

ciency as shown in Fig 11, demonstrates the higher performance of this suggested strategy.

The recommended approach outperforms the alternative in terms of overall energy efficiency,

and this outcome can be attributed to several significant factors. First, the recommended

method most likely makes use of sophisticated algorithms or methodologies to figure out the

best transmission distance between IoT-sensors and G in order to maximize achievable data

throughput and energy efficiency. The result of this optimization is improved energy effi-

ciency, which allows for more efficient use of transmission power. Moreover, this adaptability

Fig 9. Required signal-to-interference-plus-noise-ratio (SINRth) versus overall system energy efficiency (EE) (bit/J).

https://doi.org/10.1371/journal.pone.0311601.g009
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enables the proposed approach to attain optimal equilibrium between signal quality and trans-

mission range, contributing to heightened energy economy. Furthermore, energy efficiency

may automatically be increased by the basic architecture or design principles of the proposed

technique. This could involve new techniques for transmission protocols, interference man-

agement, or modulation methods that when combined produce a more energy-efficient system

than the alternative paradigm. In summary, the proposed technique’s enhanced energy effi-

ciency under transmission power and SINRth variations which can be ascribed to its sophisti-

cated optimization methods, versatility, and effective architecture.

Conclusion

This paper presents a novel communication method that combines analytical and deep learn-

ing models to enable effective communication between IoT-sensors and gateways in smart

farms. The issue of maximizing energy efficiency and feasible data rate has been taken into

consideration in order to guarantee dependable and accurate data transmission between IoT-

sensors and gateway, as well as to lessen the impact of concurrent transmission from other

devices sharing the same spectrum. The quality of the data received may be impacted by such

Fig 10. Required signal-to-interference-plus-noise-ratio (SINRth) versus overall system achievable data rate (R) (bit/s).

https://doi.org/10.1371/journal.pone.0311601.g010
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interference, which would impact the data being sent to any destination. Farmers’ decisions

are impacted when the destination cannot obtain accurate data because of delayed data trans-

mission. The first step in solving the challenge of maximizing energy efficiency and an achiev-

able data rate is to use the Lagrange optimization technique to determine the ideal required

distance between IoT-sensors and gateways. Next, this distance is simulated using MATLAB.

Consequently, a recommendation was made for the recommended model for the ensuing

1D-CNN-based deep learning model. Reducing computational complexity is the aim of

1D-CNN, which makes it perfect for real-time applications and permits processing energy effi-

ciency and overall attainable data rate. Consequently, in order to get a virtually optimal out-

come, the deep learning model utilized for IoT-sensors is able to determine the ideal needed

transmission distance. Therefore, the deep learning model applied to IoT-sensors can estimate

the optimal necessary transmission distance to get an almost flawless result. Consequently,

both approaches have been used to evaluate the optimal transmission distance between IoT-

sensors and the gateway. The analytical results of anticipating the ideal required transmission

distance between IoT-sensors and gateway are thus presented in order to meet the fundamen-

tal system performance requirements. Results on the achievable data rate and system energy

efficiency indicate that the proposed model may perform effectively under a range of

Fig 11. IoT-sensors transmission power (PI) vs overall energy efficiency (EE).

https://doi.org/10.1371/journal.pone.0311601.g011
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environmental circumstances. Furthermore, it has been shown through the use of analytical

and deep learning techniques that a number of factors, such as the required signal-to-interfer-

ence-plus-noise (SINRth), interfere devices transmission distance, and IoT-sensors transmis-

sion power (PI), can affect the required transmission distance. The findings demonstrate that,

at maximum IoT-sensor and interference device power, the required signal-to-interference-

plus-noise SINRth climbs, as does the necessary transmission distance between IoT-sensors

and gateways. This is because interference needs to be reduced or mitigated in order to get the

high needed signal-to-interference-plus-noise ratio. This can be achieved by reducing the

transmission data, which in turn reduces the necessary transmission distance. In the end, the

findings demonstrate that the suggested model may maintain a respectable degree of efficacy

and dependability while achieving the necessary IoT performance for smart farm

communication.
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