Piti Sukontasukkul
Eco-friendly 3D Printing Mortar with Low Cement Content: Investigation on Printability and Mechanical Properties
Sukontasukkul, Piti; Komkham, Sila; Jamnam, Sittisak; Zhang, Hexin; Fujikake, Kazunori; Puttiwongrak, Avirut; Hansapinyo, Chayanon
Authors
Sila Komkham
Sittisak Jamnam
Prof Johnson Zhang j.zhang@napier.ac.uk
Professor
Kazunori Fujikake
Avirut Puttiwongrak
Chayanon Hansapinyo
Abstract
The conventional approach to achieving optimal printability and buildability in 3D printing mortar relies heavily on cement, which is both costly and environmentally detrimental due to substantial carbon emissions from its production. This study aims to mitigate these issues by investigating the viability of slag as a partial substitute for cement, with the goal of developing an eco-friendly alternative. The newly formulated mortar, featuring a 30% reduction in cement content (from 830 to 581 kg/m3) and the inclusion of 0.10% micro-fibers, exhibits properties comparable to conventional 3D printing mortar. The research is structured into two parts: Part 1 focuses on determining the optimal fiber content, while Part 2 delves into the investigation of fiber-reinforced mortar with reduced cement content for 3D printing. Criteria were established to ensure mortar flow at 115%, initial printable time below 60 minutes, and 7-day compressive strength exceeding 28 MPa. Part 1 results indicate that a fiber content of 0.1% by volume meets the specified requirements. In Part 2, it was observed that increasing the slag replacement percentage extended the initial printable time and time gap. However, even at a 30% replacement rate, the initial printable time remained within the acceptable range, partially attributed to the presence of fibers in the mix. Additionally, higher slag content led to increased flow and reduced filament height in the mixes. Notably, all formulations surpassed the 7-day compressive strength threshold. These findings underscore the potential of slag as a sustainable alternative to cement in 3D printing fiber-reinforced mortar, offering promising prospects for environmentally friendly construction practices.
Citation
Sukontasukkul, P., Komkham, S., Jamnam, S., Zhang, H., Fujikake, K., Puttiwongrak, A., & Hansapinyo, C. (2024). Eco-friendly 3D Printing Mortar with Low Cement Content: Investigation on Printability and Mechanical Properties. Civil Engineering Journal, 10(3), https://doi.org/10.28991/CEJ-2024-010-03-010
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 27, 2024 |
Publication Date | 2024 |
Deposit Date | Feb 27, 2024 |
Publicly Available Date | Apr 25, 2024 |
Print ISSN | 2676-6957 |
Electronic ISSN | 2476-3055 |
Publisher | Salehan Institute of Higher Education |
Peer Reviewed | Peer Reviewed |
Volume | 10 |
Issue | 3 |
DOI | https://doi.org/10.28991/CEJ-2024-010-03-010 |
Keywords | 3D printing; Eco-friendly cement mortar; Slag; Cement replacement; Printable cement mortar; Sustainability construction |
Public URL | http://researchrepository.napier.ac.uk/Output/3525981 |
Publisher URL | https://civilejournal.org/index.php/cej |
Files
Eco-friendly 3D Printing Mortar with Low Cement Content: Investigation on Printability and Mechanical Properties
(3.6 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Role of Slag Replacement on Strength Enhancement of One-Part High-Calcium Fly Ash Geopolymer
(2024)
Journal Article
Whole‐Life Embodied Carbon Reduction Strategies in UK Buildings: A Comprehensive Analysis
(2024)
Journal Article
A preliminary study on bamboo-timber composite columns under axial compression
(2024)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search