Leandros Maglaras
Novel Intrusion Detection Mechanism with Low Overhead for SCADA Systems
Maglaras, Leandros; Janicke, Helge; Jiang, Jianmin; Crampton, Andrew
Authors
Helge Janicke
Jianmin Jiang
Andrew Crampton
Abstract
SCADA (Supervisory Control and Data Acquisition) systems are a critical part of modern national critical infrastructure (CI) systems. Due to the rapid increase of sophisticated cyber threats with exponentially destructive effects, intrusion detection systems (IDS) must systematically evolve. Specific intrusion detection systems that reassure both high accuracy, low rate of false alarms and decreased overhead on the network traffic must be designed for SCADA systems. In this book chapter we present a novel IDS, namely K-OCSVM, that combines both the capability of detecting novel attacks with high accuracy, due to its core One-Class Support Vector Machine (OCSVM) classification mechanism and the ability to effectively distinguish real alarms from possible attacks under different circumstances, due to its internal recursive k-means clustering algorithm. The effectiveness of the proposed method is evaluated through extensive simulations that are conducted using realistic datasets extracted from small and medium sized HTB SCADA testbeds.
Citation
Maglaras, L., Janicke, H., Jiang, J., & Crampton, A. (2019). Novel Intrusion Detection Mechanism with Low Overhead for SCADA Systems. In Securing the Internet of Things: Concepts, Methodologies, Tools, and Applications (299-318). IGI Global. https://doi.org/10.4018/978-1-5225-9866-4.ch017
Publication Date | Sep 6, 2019 |
---|---|
Deposit Date | Jan 6, 2023 |
Publisher | IGI Global |
Pages | 299-318 |
Book Title | Securing the Internet of Things: Concepts, Methodologies, Tools, and Applications |
ISBN | 9781522598664 |
DOI | https://doi.org/10.4018/978-1-5225-9866-4.ch017 |
Public URL | http://researchrepository.napier.ac.uk/Output/2969361 |
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search