Julia Brandes
On the inhomogeneous Vinogradov system
Brandes, Julia; Hughes, Kevin
Authors
Kevin Hughes
Abstract
We show that the system of equations
∑_{i=1}^{s} (x_i^j−y_i^j) = a_j (1⩽j⩽k)
has appreciably fewer solutions in the subcritical range s<k(k+1)/2
than its homogeneous counterpart, provided that a_ℓ≠0 for some ℓ⩽k−1. Our methods use Vinogradov’s mean value theorem in combination with a shifting argument.
Citation
Brandes, J., & Hughes, K. (2022). On the inhomogeneous Vinogradov system. Bulletin of the Australian Mathematical Society, 106(3), 396-403. https://doi.org/10.1017/s0004972722000284
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 15, 2022 |
Online Publication Date | Apr 19, 2022 |
Publication Date | 2022-12 |
Deposit Date | Dec 2, 2022 |
Publicly Available Date | Dec 2, 2022 |
Journal | Bulletin of the Australian Mathematical Society |
Print ISSN | 0004-9727 |
Electronic ISSN | 1755-1633 |
Publisher | Cambridge University Press |
Peer Reviewed | Peer Reviewed |
Volume | 106 |
Issue | 3 |
Pages | 396-403 |
DOI | https://doi.org/10.1017/s0004972722000284 |
Keywords | Diophantine equations, exponential sums |
Public URL | http://researchrepository.napier.ac.uk/Output/2965313 |
Files
On The Inhomogeneous Vinogradov System
(254 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Improved bounds on number fields of small degree
(2024)
Journal Article
The Pointillist principle for variation operators and jump functions
(2024)
Journal Article
A decoupling interpretation of an old argument for Vinogradov's Mean Value Theorem
(2023)
Journal Article
Discrete restriction estimates for forms in many variables
(2023)
Journal Article
Some Subcritical Estimates for the ℓp-Improving Problem for Discrete Curves
(2022)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search