Brian Cook
Bounds for Lacunary maximal functions given by Birch–Magyar averages
Cook, Brian; Hughes, Kevin
Authors
Kevin Hughes
Abstract
We obtain positive and negative results concerning lacunary discrete maximal operators defined by dilations of sufficiently nonsingular hypersurfaces arising from Diophantine equations in many variables. Our negative results show that this problem differs substantially from that of lacunary discrete maximal operators defined along a nonsingular hypersurface. Our positive results are improvements over bounds for the corresponding full maximal functions which were initially studied by Magyar.
In order to obtain positive results, we use an interpolation technique of the second author to reduce problem to a maximal function of main terms. The main terms take the shape of those introduced in work of the first author, which is a more localized version of the main terms that appear in work of Magyar. The main ingredient of this paper is a new bound on the main terms near []. For our negative results we generalize an argument of Zienkiewicz.
Citation
Cook, B., & Hughes, K. (2021). Bounds for Lacunary maximal functions given by Birch–Magyar averages. Transactions of the American Mathematical Society, 374(6), 3859-3879. https://doi.org/10.1090/tran/8152
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 12, 2020 |
Online Publication Date | Mar 26, 2021 |
Publication Date | 2021 |
Deposit Date | Nov 21, 2022 |
Journal | Transactions of the American Mathematical Society |
Print ISSN | 0002-9947 |
Electronic ISSN | 1088-6850 |
Publisher | American Mathematical Society |
Peer Reviewed | Peer Reviewed |
Volume | 374 |
Issue | 6 |
Pages | 3859-3879 |
DOI | https://doi.org/10.1090/tran/8152 |
Keywords | Applied Mathematics; General Mathematics |
Public URL | http://researchrepository.napier.ac.uk/Output/2963232 |
You might also like
A decoupling interpretation of an old argument for Vinogradov's Mean Value Theorem
(2023)
Journal Article
Discrete restriction estimates for forms in many variables
(2023)
Journal Article
Some Subcritical Estimates for the ℓp-Improving Problem for Discrete Curves
(2022)
Journal Article
On the inhomogeneous Vinogradov system
(2022)
Journal Article
On the ergodic Waring–Goldbach problem
(2021)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search