T. Anderson
Lp→Lq bounds for spherical maximal operators
Anderson, T.; Hughes, K.; Roos, J.; Seeger, A.
Authors
K. Hughes
J. Roos
A. Seeger
Abstract
Let f∈Lp(Rd), d≥3, and let Atf(x) be the average of f over the sphere with radius t centered at x. For a subset E of [1, 2] we prove close to sharp Lp→Lq estimates for the maximal function supt∈E|Atf|. A new feature is the dependence of the results on both the upper Minkowski dimension of E and the Assouad dimension of E. The result can be applied to prove sparse domination bounds for a related global spherical maximal function.
Citation
Anderson, T., Hughes, K., Roos, J., & Seeger, A. (2021). Lp→Lq bounds for spherical maximal operators. Mathematische Zeitschrift, 297(3-4), 1057-1074. https://doi.org/10.1007/s00209-020-02546-0
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 9, 2020 |
Online Publication Date | Jun 5, 2020 |
Publication Date | 2021-04 |
Deposit Date | Nov 21, 2022 |
Journal | Mathematische Zeitschrift |
Print ISSN | 0025-5874 |
Electronic ISSN | 1432-1823 |
Publisher | Springer |
Peer Reviewed | Peer Reviewed |
Volume | 297 |
Issue | 3-4 |
Pages | 1057-1074 |
DOI | https://doi.org/10.1007/s00209-020-02546-0 |
Keywords | Lp -improving estimates, Spherical maximal functions, Minkowski dimension, Assouad dimension, Assouad spectrum, Sparse domination |
Public URL | http://researchrepository.napier.ac.uk/Output/2963145 |
You might also like
A decoupling interpretation of an old argument for Vinogradov's Mean Value Theorem
(2023)
Journal Article
Discrete restriction estimates for forms in many variables
(2023)
Journal Article
Some Subcritical Estimates for the ℓp-Improving Problem for Discrete Curves
(2022)
Journal Article
On the inhomogeneous Vinogradov system
(2022)
Journal Article
On the ergodic Waring–Goldbach problem
(2021)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search