Lydia Chan
Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay
Chan, Lydia; Shyha, Islam; Dreyer, Dale; Hamilton, John; Hackney, Philip
Abstract
Nickel-based superalloys are generally known to be difficult to cut due to their strength, low thermal conductivity, and high work hardening tendency. Superalloy such as alloy 625 is often used in the oil and gas industry as a surfacing material to provide wear and corrosion resistance to components. The material is typically applied onto a metallic substrate through weld overlay cladding, an arc welding technique. Cladded surfaces are always rugged and carry a tough skin; this creates further difficulties to the machining process. The present work utilised design of experiment to optimise the internal cylindrical rough turning for weld overlay surfaces. An L27 orthogonal array was used to assess effects of the four selected key process variables: cutting insert, depth of cut, feed rate, and cutting speed. The optimal cutting conditions were determined based on productivity and the level of tool wear.
Citation
Chan, L., Shyha, I., Dreyer, D., Hamilton, J., & Hackney, P. (2017). Process Optimisation for Internal Cylindrical Rough Turning of Nickel Alloy 625 Weld Overlay. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 11(4),
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 20, 2017 |
Publication Date | 2017 |
Deposit Date | Nov 30, 2020 |
Journal | International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering |
Publisher | World Academy of Science, Engineering and Technology |
Peer Reviewed | Peer Reviewed |
Volume | 11 |
Issue | 4 |
Keywords | Cylindrical turning, nickel superalloy, turning of overlay, weld overlay |
Public URL | http://researchrepository.napier.ac.uk/Output/2686802 |
Publisher URL | https://publications.waset.org/10006829/pdf |
You might also like
Stretchable electrospun PVDF/TPU nanofibers membranes: Acoustic signals detectors
(2024)
Journal Article
Optimizing DMF Utilization for Improved MXene Dispersions in Epoxy Nanocomposites
(2024)
Journal Article
Optimizing DMF Utilization for Improved MXene Dispersions in Epoxy Nanocomposites
(2024)
Preprint / Working Paper
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search