M P Kumara
High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise
Kumara, M P; Jayatissa, Loku P; Krauss, Ken W; Phillips, D H; Huxham, Mark
Abstract
Survival, growth, aboveground biomass accumulation, sediment surface elevation dynamics and nitrogen accumulation in sediments were studied in experimental treatments planted with four different densities (6.96, 3.26, 1.93 and 0.95 seedlings m−2) of the mangrove Rhizophora mucronata in Puttalam Lagoon, Sri Lanka. Measurements were taken over a period of 1,171 days and were compared with those from unplanted controls. Trees at the lowest density showed significantly reduced survival, whilst measures of individual tree growth did not differ among treatments. Rates of surface sediment accretion (means ± SE) were 13.0 (±1.3), 10.5 (±0.9), 8.4 (±0.3), 6.9 (±0.5) and 5.7 (±0.3) mm year−1 at planting densities of 6.96, 3.26, 1.93, 0.95, and 0 (unplanted control) seedlings m−2, respectively, showing highly significant differences among treatments. Mean (±SE) rates of surface elevation change were much lower than rates of accretion at 2.8 (±0.2), 1.6 (±0.1), 1.1 (±0.2), 0.6 (±0.2) and −0.3 (±0.1) mm year−1 for 6.96, 3.26, 1.93, 0.95, and 0 seedlings m−2, respectively. All planted treatments accumulated greater nitrogen concentrations in the sediment compared to the unplanted control. Sediment %N was significantly different among densities which suggests one potential causal mechanism for the facilitatory effects observed: high densities of plants potentially contribute to the accretion of greater amounts of nutrient rich sediment. While this potential process needs further research, this study demonstrated how higher densities of mangroves enhance rates of sediment accretion and surface elevation processes that may be crucial in mangrove ecosystem adaptation to sea-level rise. There was no evidence that increasing plant density evoked a trade-off with growth and survival of the planted trees. Rather, facilitatory effects enhanced survival at high densities, suggesting that managers may be able to take advantage of high plantation densities to help mitigate sea-level rise effects by encouraging positive sediment surface elevation.
Citation
Kumara, M. P., Jayatissa, L. P., Krauss, K. W., Phillips, D. H., & Huxham, M. (2010). High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia, 164, 545-553. https://doi.org/10.1007/s00442-010-1705-2
Journal Article Type | Article |
---|---|
Publication Date | 2010 |
Deposit Date | Apr 3, 2014 |
Print ISSN | 0029-8549 |
Electronic ISSN | 1432-1939 |
Publisher | BMC |
Peer Reviewed | Peer Reviewed |
Volume | 164 |
Pages | 545-553 |
DOI | https://doi.org/10.1007/s00442-010-1705-2 |
Keywords | Mangroves; Sediment accretion; Tree density; Facilitation; Sea-level rise; Sri Lanka; |
Public URL | http://researchrepository.napier.ac.uk/id/eprint/6717 |
Publisher URL | http://dx.doi.org/10.1007/s00442-010-1705-2 |
You might also like
Rapid Losses of Surface Elevation following Tree Girdling and Cutting in Tropical Mangroves
(2014)
Journal Article
Making predictions of mangrove deforestation: a comparison of two methods in Kenya.
(2013)
Journal Article
The medium makes the message: Effects of cues on students' lecture notes
(2010)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search