Francesco Cauteruccio
Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance
Cauteruccio, Francesco; Fortino, Giancarlo; Guerrieri, Antonio; Liotta, Antonio; Mocanu, Decebal Constantin; Perra, Cristian; Terracina, Giorgio; Torres Vega, Maria
Authors
Giancarlo Fortino
Antonio Guerrieri
Antonio Liotta
Decebal Constantin Mocanu
Cristian Perra
Giorgio Terracina
Maria Torres Vega
Abstract
Heterogeneous wireless sensor networks are a source of large amount of different information representing environmental aspects such as light, temperature, and humidity. A very important research problem related to the analysis of the sensor data is the detection of relevant anomalies. In this work, we focus on the detection of unexpected sensor data resulting either from the sensor system itself or from the environment under scrutiny. We propose a novel approach for automatic anomaly detection in heterogeneous sensor networks based on coupling edge data analysis with cloud data analysis. The former exploits a fully unsupervised artificial neural network algorithm, whereas cloud data analysis exploits the multi-parameterized edit distance algorithm. The experimental evaluation of the proposed method is performed applying the edge and cloud analysis on real data that has been acquired in an indoor building environment and then distorted with a range of synthetic impairments. The obtained results show that the proposed method can self-adapt to the environment variations and correctly identify the anomalies. We show how the combination of edge and cloud computing can mitigate the drawbacks of purely edge-based analysis or purely cloud-based solutions.
Citation
Cauteruccio, F., Fortino, G., Guerrieri, A., Liotta, A., Mocanu, D. C., Perra, C., Terracina, G., & Torres Vega, M. (2019). Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance. Information Fusion, 52, 13-30. https://doi.org/10.1016/j.inffus.2018.11.010
Journal Article Type | Article |
---|---|
Acceptance Date | Nov 25, 2018 |
Online Publication Date | Nov 26, 2018 |
Publication Date | 2019-12 |
Deposit Date | Jul 29, 2019 |
Publicly Available Date | Aug 2, 2019 |
Journal | Information Fusion |
Print ISSN | 1566-2535 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 52 |
Pages | 13-30 |
DOI | https://doi.org/10.1016/j.inffus.2018.11.010 |
Keywords | Intelligent sensing; Sensor fusion; Anomaly detection; Cloud-assisted sensing; Internet of Things |
Public URL | http://researchrepository.napier.ac.uk/Output/1995571 |
Publisher URL | https://doi.org/10.1016%2Fj.inffus.2018.11.010 |
Files
Short-Long Term Anomaly Detection in Wireless Sensor Networks based on Machine Learning and Multi-Parameterized Edit Distance
(2.5 Mb)
PDF
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search