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Abstract

Heterogeneous wireless sensor networks are a source of large amount of different
information representing environmental aspects such as light, temperature, and
humidity. A very important research problem related to the analysis of the
sensor data is the detection of relevant anomalies. In this work, we focus on
the detection of unexpected sensor data resulting either from the sensor system
itself or from the environment under scrutiny. We propose a novel approach
for automatic anomaly detection in heterogeneous sensor networks based on
coupling edge data analysis with cloud data analysis. The former exploits a fully
unsupervised artificial neural network algorithm, whereas cloud data analysis
exploits the multi-parameterized edit distance algorithm. The experimental
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evaluation of the proposed method is performed applying the edge and cloud
analysis on real data that has been acquired in an indoor building environment
and then distorted with a range of synthetic impairments. The obtained results
show that the proposed method can self-adapt to the environment variations
and correctly identify the anomalies. We show how the combination of edge
and cloud computing can mitigate the drawbacks of purely edge-based analysis
or purely cloud-based solutions.

Keywords: Intelligent sensing, Sensor fusion, Anomaly detection,
Cloud-assisted sensing, Internet of Things

1. Introduction

A wireless sensor network (WSN) is a distributed network architecture com-
posed of a set of autonomous networked electronic devices (sensor nodes) col-
lecting data from the surrounding environment. Examples of data sources are
temperature, humidity, light, noise, electric current, voltage, and power.

The market of wireless sensor networks is continuously growing thanks to
technological and computational improvements [1]. At the same time, efficient
management techniques are needed for dealing with the network complexity and
the huge amount and variety of sensor data [2, 3].

Wireless sensor networks are typically connected to cloud services through
the Internet. Cloud platforms provide the storage and computing infrastructures
necessary for archiving and processing the large amount of data generated by
sensors [4]. Graphical visualization, statistical analysis, and tabular reporting
of sensor data are very common applications in WSNs and in the Internet of
Things (IoT) domain.

A challenging research is the problem of sensor data analysis for automatic
anomaly detection [5]. The term anomaly detection has a broad meaning in
the literature, referring to the identification of items, events or observations
which rise some kind of suspicions. In this paper, we focus on the detection of
unexpected variations of sensed data that may result from the sensor system
itself but also from the environment under scrutiny. In WSNs, the causes of
anomalies may be related to several factors. Examples are: devices running out
of power, devices deviating from the expected behaviour, and malfunctioning
devices. Yet, it is often difficult to discern the anomalies of the sensor system
from the actual anomalies in the sensed environment.

In this context, the kind of WSN, the detection methodology, and the kind
of anomalies of interest may significantly impact on the solution design. In
this paper, we focus on three orthogonal research directions related to anomaly
detection in WSNs: (i) homogeneous vs. heterogeneous WSNs; (77) methods di-
rectly running on sensing devices (hereafter, edge-based methods) vs. methods
running on the cloud (hereafter, cloud-based methods); (iii) anomalies span-
ning over short periods of time (hereafter, short-term anomalies) vs. anomalies
spanning over long periods of time (hereafter, long-term anomalies).
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Anomaly detection in homogeneous WSNs received much attention in the
literature. Most of the approaches regarding anomaly detection are dedicated
to the analysis of data streams produced by a single device [6, 7, 8, 9]. In this
case, a single device is analyzed, by means of different techniques, to under-
stand whether or not an anomaly has occurred. These techniques are usually
based on complex mathematical analysis or statistical methods applied on data
streams [6, 9], which are tailored to the specific numerical characteristics of the
kind of sensed data. Consequently, applying such methods to heterogeneous
WSNs to sense different kind of parameters, and involving multiple sensors is
not straightforward.

Data representations other than the numerical ones have been considered in
[10, 11, 12, 13, 14, 15, 16, 17] which, however, assume that the actual data is
homogeneous. For instance, in [10] a survey on graph-based anomaly detection
and description is presented. Its focus is on providing a general and structured
overview of methods for anomaly detection in data represented as graphs and
categorized under various settings. Being able to differentiate data representa-
tion allows to apply anomaly detection in different domains such as financial
auctioning and social networks. In particular, anomaly detection on (or based
on) social network has gained an increasing importance [11]. Other approaches
apply mathematical or machine learning based analysis on different data lev-
els. This kind of techniques has been applied in intrusion detection in security
systems [12] and fraud detection for credit cards [13]. In [14], incoming data
packets are compared to fixed patterns in order to identify known behavioral
instances. Spatial anomaly detection is analyzed in [15] using neural networks.

Even in the presence of numerical data only, a sensor network may be het-
erogeneous, if it consists of sensor nodes with different abilities. Heterogeneous
sensors are devices producing different kinds of signals, measures or messages.
As an example, sensors in an heterogeneous network may produce differently
scaled real value data, measuring different parameters like temperature, humid-
ity, light, electric current, voltage, and so on.

Anomaly detection in heterogeneous sensor networks has received less atten-
tion in the literature. An approach for monitoring heterogeneous wireless sensor
networks and to identify hidden correlations between heterogeneous sensors has
been proposed in [18]. This approach can identify hidden correlations between
heterogeneous sensors but has not been specifically conceived for anomaly de-
tection. Moreover, this method has not been designed for large sensor networks,
and would be unfeasible in this context, given its requirement to make compar-
isons between all the sensor pairs across the network. Furthermore, it would
be unrealistic to rely on the entire data stream, given the limited resources
available in the network.

In this paper we develop a framework to detect anomalies in heterogeneous
WSNs. The proposed framework combines two different approaches: the first
one locally analyzes the sensor data coming from the individual nodes in the
network (each node may contain heterogeneous sensors); the second one com-
pares data coming from several heterogeneous sensors spread over the entire
network. We show that the combined use of local and cloud-based analysis al-
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lows to overcome the limitations arising when each method is used in isolation,
allowing us to detect more complex anomalies and to operate on a larger WSN
scale.

As far as cloud-based methods and edge-based methods are concerned, we
point out that performing anomaly detection on the cloud allows to resort to
quite complex algorithms and, consequently, to get accurate results. However,
performing anomaly detection just on the cloud presents some drawbacks. First
of all, communication bottlenecks yielded by too much data transmitted from
nodes to the central servers may induce packet losses and delays [19]. Moreover,
in large WSNs simultaneously analyzing all sensors streams would introduce
real-time computational constraints.

On the other hand, edge-based methods run directly on nodes equipped with
light computing power. Most of these approaches require samples of historical
data to be kept in the sensor node, which has limited memory. Besides that,
most of the state-of-the-art learning algorithms target network organization,
usually routing protocols [19]. Yet, few works target directly in-node anomaly
detection, and all methods still depend on relatively large sliding windows for
accuracy. For instance, a sliding window is used together with an ellipsoidal sup-
port vector machine (SVM) in [20], with various linear and non-linear machine
learning models in [21, 22], and with ensemble methods [23].

Given the intrinsic nature of edge-based methods, these must be light-weight
and fast. However, due to the stringent constraints they must comply with, edge
computing cannot be as accurate as cloud-based methods. Thus, edge-based
methods would naturally be more scalable than cloud-based ones, but suffer
from poor accuracy. We aim to address this weakness in our work.

Our framework combines an edge-based method with a cloud-based one in
order to overcome the drawbacks that each method would have when used in
isolation. Running locally in each device, the edge-based method acts in real-
time on the sensor data, providing the first line of the anomaly detection process.
Edge detection does not aim at high accuracy; it is intended to prompt the cloud
system towards analyzing a subset of sensor streams, as we describe in Section
2.

Using machine learning (ML) on the device poses a new problem: how to
detect anomalies under constrained computing conditions. We introduce a novel
ML approach, named Anomaly detection with Generative replay (AnGe). AnGe
can detect anomalies, by making use of the generative and density estimation
capabilities of a deep learning method, i.e. restricted Boltzmann machines,
without requiring to store any historical data in the node memory. On the
other hand, the proposed cloud-based method extends the work presented in
[18], in order to identify anomalies. Computational costs are reduced both by
a redesign of the approach and by the preemptive action of the edge algorithm,
which selects only the most probable sensor streams for analysis.

Another important aspect to consider is the time-span covered by the anomaly
itself. Due to the particular constraints of edge and cloud computing, we should
not try to detect both short- and long-term anomalies at the same time. Edge
methods can only rely on limited computing resources, which makes it very hard
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to detect long-term anomalies directly in the nodes. We focus on short-term
anomalies at the edge, leaving long-term anomalies to the cloud. Our approach
is therefore particularly effective at detecting a range of anomalies, by tracing
the short-term origin of long-term anomalies.

Thus, our contribution goes even beyond the issue of scalability in IoT
anomaly detection. We can detect short-term anomalies that would escape
a cloud-based system and, conversely, long-term anomalies that would be im-
possible to capture on board of sensor nodes.

The paper is organized as follows. Section 2 presents the proposed frame-
work, including the cloud-based and the edge-based computing components.
The experimental analysis and related discussion are reported in Section 3. Fi-
nally, Section 4 draws the conclusions.

2. Proposed framework

In this section we introduce our general framework for the Short-Long Term
Anomaly Detection method, which mixes an edge computing based approach
for the identification of short-term anomalies, and a cloud computing based
approach for the identification of long-term anomalies.

This mixed approach aims at mitigating the drawbacks that each of these
two methods would have when used in isolation, while making the most of
individual strengths. The edge-based method does not exploit historical data
and, consequently, its hardware and computational requirements are low. Due
to these properties, the method is also effective at identifying alterations in the
data that occur in a short period of time; however, it may miss variations on
sensor data spanning over relatively longer periods. If the anomaly is isolated
and short termed it may result from some localized problem or may just arise
from noise. Per contra, when a local anomaly is at the root of a bigger (long
termed) issue on a sensor, a purely edge-based detection may fail.

On the other hand, a cloud-based method tends to be more accurate at
identifying long-term anomalies; but it may miss very short ones. However, in
order to carry out its task, the method needs to analyze the history of sensed
data, which requires significant computational efforts. We cannot afford this
effort on all sensor streams, that is where edge processes come handy to help
selecting the relevant streams and reduce load on network and cloud.

In the proposed framework, we mix the two methods as shown in Figure
1. The edge-based method runs continuously on each node of the WSN. No
communication between the nodes is needed to perform the analysis. Short-
term anomaly detection is carried out at node level. As soon as a short-term
anomaly is identified on a node, a short-term alert is issued and sent also to the
cloud for further elaboration.

At the cloud level, information on the alerted node is exploited to identify
sensors of interest first (see Section 2.3 for the details). Then, an instance of
the cloud-based method is immediately triggered, exclusively for each of these
sensors. It starts working on a data window already available in the cloud and,
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Figure 1: The main workflow of the proposed approach.

consequently, it does not have to wait for data generation; it issues a long-term
alert as soon as a long-term anomaly is detected on the previous data window.
The task on each sensor is repeatedly run until no long-term anomalies are
detected on it for a given period of time; after this, the task is paused until a
new short-term alert regarding the sensor is received.

2.1. Preliminaries

Both the edge-based and the cloud-based methods proposed in this paper
build on previous work by the authors. For completeness and for the sake of
the non-specialist reader, we provide below a summary of key concepts that
underlie the framework introduced hereafter.

2.1.1. Preliminary notions for the edge-based method

In order to perform edge-based anomaly detection we contribute by exploit-
ing the possibility of performing online unsupervised learning in each node with
Artificial Neural Networks (ANN). This ensures a fully decentralized method to
detect anomalies, each node being completely independent from the others. At
the same time, it ensures data fusion for one node, i.e. the measurements of all
sensors belonging to one node are treated together at each time step ¢ to detect
anomalies.

However, online learning with ANNS is in many cases difficult due to the need
of storing and relearning large amounts of previous experiences, in order to avoid
catastrophic forgetting. While for a standard computer this is an issue that can
be easily solved, in the world of low-resources devices these excessive memory
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requirements, necessary to explicitly store previous observations, represent a big
challenge. To overpass it, in this paper, we make use of a novel concept pro-
posed by us in [24] and developed further in [25, 26], namely generative replay.
Generative replay uses the generative capabilities of generative ANN models
to generate approximations of past experiences, instead of recording them, as
experience replay does. Thus, the generative model can be trained online, and
does not require the system to store any of the observed data points, this being
a perfect scenario for anomaly detection in wireless sensor nodes. More exactly,
in this paper, we use a generative model called Restricted Boltzmann Machine
(RBM) [27] trained with Online Contrastive Divergence with Generative Replay
(OCDgr), and named RBMocp [24].

In the approaches described in [24, 25, 26], generative replay is capable
just to learn data distributions in an online manner, but it cannot perform
online anomaly detection. In this paper, we address this issues, and we propose
a novel method based on RBMpcp and generative replay to perform online
anomaly detection. In the next paragraphs RBMpcp and similarity metrics
with RBMs are briefly summarized for the benefit on the non-specialist reader,
whereas in Section 2.2, the new proposed method for online anomaly detection
is introduced.

RBMs have been introduced in [27] as a powerful model to learn a prob-
ability distribution over its inputs. Formally, RBMs are generative stochastic
neural networks with two binary layers: the hidden layer h = [hy, ho, .., hy, ], and
the visible layer v = [v1, va, .., Uy, ], Where n;, and n, are the numbers of hid-
den neurons and visible neurons, respectively. In comparison with the original
Boltzmann machine [28], the RBM architecture is restricted to be a complete
bipartite graph between the hidden and visible layers, disallowing intra-layer
connections between the units. The energy function of an RBM for any state
{v,h} is computed by summing over all possible interactions between neurons,
weights, and biases as follows:

E(v,h) = —a’v —b"h — h"Wv, (1)

where W € R"»*™v ig the weighted adjacency matrix for the bipartite connec-
tions between the visible and hidden layers, and a € R™ and b € R"" are
vectors containing the biases for the visible and hidden neurons, respectively.
Functionally, the visible layer encodes the data, while the hidden layer increases
the learning capacity of the RBM model by enlarging the class of distributions
that can be represented to an arbitrary complexity [29]. The activations of the
hidden or visible layers are generated by sampling from a sigmoid S(-) according
to: P(h) = S(b+ Wv) and P(v) = S(a+ W7h).

Motivated by the facts that: (1) hippocampal replay [30] in the human
brain does not recall previous observations explicitly, but instead it generates
approximate reconstructions of the past experiences for recall, and (2) RBMs
can generate good samples of the incorporated data distribution via Gibbs sam-
pling [31], in [24] we proposed RBMocp. Intuitively, RBMopcp uses generated
samples by itself (instead of recalling previous observations from stored memory)
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during the online training process. Thus, the RBM model can retain knowledge
of past observations while learning new ones. The interested reader is referred
to [24] for a detailed discussion on RBMocp.

Just like for any other RBM variant trained offline [32], during learning
RBMopecp minimizes the error between the reconstructed version of the input
data, denoted further v, and the input data itself, v. The reconstructed version
(x) of a given input data point (x), is computed by performing a one step Gibbs
sampling starting from the original data point clamped to the visible neurons
(v), then by inferring the hidden neurons activation (h), and then by inferring
the visible neurons activation v given the hidden neurons activation. The val-
ues of the latter one activation give X. Moreover, in our previous work [33],
we showed that the error computed between a testing data point and its re-
constructed version given by an already trained offline RBM, can be used as a
similarity metric. More exactly, it can say how far the testing data point is from
the training data distribution. The interested reader is referred to [34, 33, 35, 36]
for more thorough discussions.

2.1.2. Preliminary notions for the cloud-based method

In order to identify long-term anomalies, we exploit our recently introduced
string similarity metric, called Multi-Parameterized Edit Distance (hereafter,
MPED) [18], to measure long-term correlations between apparently unrelated
data. In fact, given a pair of sensors, MPED is able to identify hidden correla-
tions between them even if they measure different kind of events; this will allow
us to define a method to detect expected correlations between pairs of sensors
first, and to verify expected correlations later on, during the normal operation
of the sensors in a network.

MPED allows the computation of the minimum edit distance between two
strings, provided that finding the optimal matching schema, under a set of
constraints, is part of the problem. In order to understand how MPED works,
in the following, we briefly recall the theoretical components of MPED.

First of all, the notion of matching schema must be introduced, which is the
core ingredient of MPED.

Let II; and IIs be two (possibly disjoint) alphabets of symbols and let s; and
so be two strings defined over II; and Ily, respectively. A matching schema M
over II; and Il is a schema representing how different combinations of the al-
phabets Iy and IT; can be combined via matching. Intuitively, given two strings
s1 and so defined over II; and Ily, M states which symbols of s; can be con-
sidered matching with symbols of s;. Many-to-many matchings are expressed
with m-partitions, and partitions disallow ambigous matchings. The following
definitions introduce M formally.

Definition 2.1 (7-partition). Given an alphabet II and an integer @ such that
0 < m < |II|, a w-partition is a partition ™ of II such that 0 < |p,| < 7, for
each ¢, € O™

Definition 2.2 ({7, m2)-matching schema). Given two alphabets II; and Iy
and two integers 1 and T2, a (71, T2)-matching schema is a function Mz, .y :
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DT x P32 — {true, false}, where @7 (i € {1,2}) is a m;-partition of IL; and, for
each ¢, € O (resp., ¢, € PT?), there is at most one ¢, € P52 (resp., ¢, €
DT ) such that M(¢y, ) = true. This means that all the symbols in ¢, match
with all the ones in ¢n,. M(py, ) = false indicates that all the symbols in ¢,
mismatch with all the ones in ¢, .

Once the notion of matching schema is available, the definition of distance
between two strings is formally introduced by the following definitions.

Definition 2.3 (Transposition). Let s and so be two strings defined over the
alphabets 11y and Ily. Let — be a symbol not included in 11y UIly. Then, a string
5; over IL; U{—} (i € 1,2) is a transposition of s; if §; can be obtained from s;
by deleting all the occurrences of —. The set of all the possible transpositions of
s; is denoted by TR(s;).

Definition 2.4 (Alignment). An alignment for the strings s1 and s is a pair
(51, 82), where 51 € TR(s1), 52 € TR(s2) and len(s1) = len(ss).

Definition 2.5 (Match and distance). Let (51, 52) be an alignment for s and
89, let Mz, »,y be a (w1, ma)-matching schema over m-partitions ®T* and ®37,
and let j be a position with 1 < j <len(81) = len(32). We say that (51, 32) has
a match at j if:

o 51[]] S ¢v;32[j] S ¢w7 ¢'u S q)71T1’ d)w S ®72T2 and M<7r1,7r2)(¢v7¢w) = true.

The distance between 51 and 5o under M ; -,y is the number of positions at
which the pair (31,32) does not have a match.

Given the previous definitions, we can introduce the notion of Multi-Parameterized

Edit Distance between two strings s; and s as follows:

Definition 2.6 (Multi-Parameterized Edit Distance - MPED). Let m; and
o be two integers such that 0 < mp < || and 0 < mo < |I4|; the Multi-
Parameterized Edit Distance between s1 and sy (Lix, x,)(51,52), for short) is
the minimum distance that can be obtained with any (mwi, e)-matching schema
and any alignment (81, 32).

To better understand the given definitions, we next present an example.

Example 2.1. Let II; = {4,5,A,B} and II; = {8,F,G,Z}. Let s; = 4445AABBA44
and so = 88FGZGGFZZ be two strings respectively over II; and II,. The values of
7 and 7o define the cardinality of each subset in a m-partition. For m; = 7wy = 2,

one (of the many) possible matching schema is {{4,5}-{8,Z}, {A,B}-{F,G}}. Note

that here {4,5}-{8,Z} means that symbols 4 and 5 match with symbols 8 and

Z. The best alignment (S1, S2) obtained by this matching schema is

s1 : 4445AABBA44 — 4445AABBA44
S9 : 88FGZGGFZZ — -88FGZGGFZZ

kk ko kkkokk
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which denotes that s can be obtained from s; by applying 3 edit operations,
giving L2 9)(51,52) = 3. Here the positions in which the pair (51, 52) does not
have a match is denoted by a blank space. O

In order to simplify the notation, we will denote by L(s1,s2) the MPED
obtained between s; and sy. Moreover, observe that values of L(s1,s2) may
vary between 0 and the length of the longest string. In order to simplify the
presentation, we will exploit a standardized version of the MPED, defined as
follows:

L(s1,82)
len(31)

L (s1,82) =

which is defined over the interval [0..1]. Here len(51) (or equivalently len(sz))
is the length of the optimal alignment computed for £(s1, s2).

2.2. Edge-based method for short-term anomaly detection

We now describe our novel online anomaly detection method, building on the
concepts introduced in Section 2.1.1, specifically RBMpcp, dubbed Anomaly
detection with Generative replay (AnGe).

The sensor measurements occur at specific time intervals. At any specific
time ¢, new measurements are given by all sensors of a node and they are
collected in a vector x*. Starting with ¢ = 0 in a continuous loop, an RBM}, .,
is trained online to model all measurements made until . At the same time, we
know [34, 33, 35, 36] that the reconstruction error of unseen data points with an
offline trained RBM gives a similarity metric with respect to the training data
points. Thus, our assumption is that if at the specific time ¢ an anomaly happens
then the reconstruction error of the measurements x* will be very different from
the reconstruction error of x*~1, both being reconstructed with RBM% . The
larger this difference, the higher is the chance of an anomaly. To quantify, let
us denote this metric mance. Using Root Mean Square Error (RMSE) for the
reconstruction error, it can be computed as follows:

SRS 1 <X, 5 _
MAnGe = ;Z(Xﬁ—xﬁ)Q— ;Z(Xf I—Xg h)?2 (2)
voi=1 Yoi=1

Further on, if more similar measurements with x* will occur, RBMBE p will
gradually enlarge its encoded data distribution to incorporate also these types
of measurements, so as not to consider them an anomaly anymore. It is worth
highlighting that AnGe needs to store in the device memory just the RBMocp
weighted connections. This makes it a suited to perform online anomaly detec-
tion in wireless nodes.

2.8. Cloud-based method for long-term anomaly detection

In order to formally describe the cloud-based method proposed in this paper,
we first introduce a formal representation of data streams in terms of chunks of

10
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sequences, generated at given time intervals. Then, we present the formalization
of the approach, which is composed of a training phase and of an operating
phase.

Let N be a set of nodes and S a set of sensors. Each sensor s € S is
equipped on a node n € N which might accommodate several sensors. In order
to simplify the notation, we assume that each sensor s € S is uniquely identified
in the set and, if necessary, function v : S — N returns the node n the sensor
s is equipped on.

A generic sensor s periodically collects data; we define an observation as the
value v collected by a sensor s in a specific time instant ¢, and we denote it as
as(t). We assume ¢ stores the complete timestamp of the collection (date/time).

A certain set of sensors is run for an arbitrary amount of time 7'; an arbitrary
sequence of time instances t;,t;41,...,t;+x—1 defines an interval over which a
chunk of data (an ordered sequence of observations) is collected; this must be
transformed into a string in order to apply MPED. Moreover, in order to analyze
the behaviour of sensors, it is important to organize observations in specific time
intervals.

In the application context of the present paper, we analyze data by hours and
days. In particular, assume that observations span over a set of days d € [1..D],
and that each day d is subdivided in hours h € [1..24], given function p(t;)
which provides the hour h the time instant ¢; belongs to and the function 06(¢;)
which provides the day t; belongs to, the sequence of time instants belonging to
a certain hour h of a certain day d is formalized by:

T(d, h) = {ti | t; € T,,O(ti) = h and 5(15,') = d}

which forms the basis for the construction of strings to be provided to MPED,
which is formalized next.

Given a sensor s;, a day of interest d and an hour of interest h, the corre-
sponding sequence of observations is the ordered sequence:

q(si,d; h) = {¥(as, (te)) [ tr € Y(d, h)}

where function ¥ transforms each single observation in the corresponding sym-
bolic representation.

Clearly, observations can be composed over several hours, or several days, if
needed.

2.8.1. The workflow of the cloud-based method

The workflow of the cloud-based method is in two phases. The first one is
devoted to training the system under “normal” operational conditions, in order
to understand expected information for each sensor and for each time slot. The
second phase, applies information learned in the first phase to identify potential
anomalies.

Intuitively, one of the novelties of the approach for long-term anomaly de-
tection introduced in this paper, relies on the fact that the training phase does
not compute expected values for the various sensors, but expected correlations

11
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between sensors. In particular, in the training phase, for each sensor, and for
each hour, we identify the so called mate-sensor, i.e. the most correlated sensor
among the set for that time slot. This mate is used as a reference during the
operating phase. In fact, whenever the correlation between the two significantly
changes, a potential anomaly can be detected.

It is important to point out that MPED plays a crucial role in this approach,
since the sensors that are being compared might be heterogeneous and correla-
tions found between mate sensors might be completely unexpected (for example,
light and temperature of sensors positioned in different points in space).

Next, we formalize the two phases of the approach.

Training phase. The training phase starts by computing the average correlation
between each pair of sensors for each hour, within a fixed period of training days
DT. In particular, for each pair of sensors s;, s; and each hour h € [1..24], we
define C(s;, s;, h) as the average correlation over days in DT. Formally:

vsia S5, h C(Si7 Sj, h’) = avg {]‘ - ‘C*(Q(Slv d7 h’)a q(5j7 d7 h))}
deDT
Based on C| for each sensor s; and each hour h, we can formally define the mate
sensor s;, of s; as:

s;h = 7(s;, h) = argmax {C(s;,s;,h)}.
5j

Finally, for each sensor s; and each hour h, we define the expected correlation
of sensor s; at hour h with its mate as n(s;, h) = C(s;,7(s;, h), h).

As an example, Table 1 shows the correlation computed during N days
for eight heterogeneous sensors for A~ = 1.Since in the one hour time interval
the sensor S1 and the sensor S2 are the best correlating ones, it is reasonable
to expect similar levels of correlation for corresponding time intervals in days
different from the N considered ones. The mating between sensors that is
extracted from the analysis of Table 1 for A = 1 is ( S1 +—— 52, S3 <— 54,
S5 ¢— 57, 56 <—— S8 ). A similar computation is carried out for the other
values of h.

Operational phase. The operational phase starts after the training phase is com-
pleted. Here, each sensor has been already associated with its mate. Thus, the
operational phase works as follows.

Given a threshold 6 € [0,1], for each sensor s;, for each day d, and for
each hour h, we compute the actual correlation, denoted by x(s;, h,d), as the
correlation between sensors s; and its mate 7(s;, h). Formally:

VSi,d,h X(Sia h7d) =1- ‘C*(Q(siada h)yq(T(si7h)7da h))

Now, a potentially anomalous behavior is detected when the actual correla-
tion of s; with its mate, significantly differs from the expected one:

Ix(8i, hyd) = n(si, h)| > 0.
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Table 1: Example of average correlation between values from eight sensors S1, S2, S3, S4, S5,
56, S7, and S8 during N days for time interval number 1. In boldface the highest correlation
between each couple of sensors.

S1 | 52 | S3 | 54| S5 | 856 | S7T | S8
S1| - [09]03]|08]05]03]|05]0.8
S2109| - | 05]09]05|04|08]02
S3103[05| - 0904040608
S4108 (08109 - |07]05]|07 |01
S5105(05]04]07| - [03]08]| 04
S6103]04]04]05]03| — |03]0.6
S7105(08]06]|0708|03]| — |05
58108 (02]08|01|04]06]| 05| —

In order to reduce false positives, an alert is issued if this condition is verified
for an average difference greater than the threshold for a fixed number of hours
H*. Formally:

alert(s;, h,d) < avg  {|x(si, h',d) —n(s;, h')|} > 6.
h'€[h—H*,h]

Observe that, choosing only one mate per sensor allows us to reduce the
computational requirements of the approach. In fact, when it is needed to verify
the behaviour of a sensor in a certain time slot, its data must be compared only
with the data from another sensor, the mate, in the same slot. In Section 3
we show that this choice allows to provide also good performances in terms of
capability in detecting anomalous behavior. A more complex approach could
consider grouping each set of similar sensors in a “mate” cluster; in this way,
checking the behavior of a sensor would result in comparing it with all the sensors
in the mate cluster. On the one hand this solution could mitigate detection
errors due to potential malfunctioning of the single mate sensor; however, in
our opinion, this would significantly increase computational requirements of
this phase.

2.4. Discussion on the improvements with respect to previous work and overhead
of the proposed approach

Next, we discuss improvements of the present proposal with respect to previ-
ous work. We elaborate on the overhead of the proposed approach, considering
both the edge and the cloud-based methods.

2.4.1. Discussion on the edge-based method

All earlier works which use machine learning to perform edge base anomaly
detection, e.g. [20, 21, 22, 23], need to store, besides the model parameters,
the historical measurements on the device, in order to be able to adapt on-
line and perform anomaly detection. This can lead to serious memory require-
ments which usually are not available on low-resource platforms. Our proposed
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method, i.e. AnGe, addresses this issue in effectively. Instead of storing the
historical measurements in the device memory, it learns their distribution in
an online manner within the RBM model, and then generates approximations
of those measurements. To do so, AnGe makes use of our previous work, i.e.
generative replay [24], to be able to learn data distributions in an online man-
ner. Generative replay [24] is a general learning method for online learning
which was not capable of performing anomaly detection. In this paper, we ad-
dress this aspect, and we propose AnGe which is capable of performing online
anomaly detection.

Thus, AnGe needs to store just the model parameters in the device mem-
ory. For instance, in the specific case of the experiments performed in this
paper, AnGe stores 43 real-valued numbers on each node, which represent the
connection weights between RBM neurons and their biases. Also, in terms of
computational time, at each time step, AnGe has to perform about 330 multi-
plications, and about 330 summations of two real-valued numbers. As discussed
and shown later in Section 3.2.1, these values add just a very small overhead to
the battery lifetime of the sensors.

2.4.2. Discussion on the cloud-based method

In this section we point out differences and improvements of the cloud-based
method proposed in this work with respect to the one presented in [18]. First
of all, the previous approach was conceived to identify (possibly hidden) corre-
lations between heterogeneous sensors. The introduction of MPED was the key
factor for the success of the approach. As pointed out in [18] the computation
of such a correlation, and the observation of a significant variation of it, may
contribute in identifying an anomaly. However, anomaly detection has not been
elaborated in [18], which is the specific topic addressed in the present work.
Moreover, the approach proposed in [18] needs to compute MPED on the entire
history of sensor data and needs to compare all pairs of sensors in the WSN.
These issues have been resolved in the present work, by the definition of a mate
sensor, which allows to compare data of only one pair of sensors, and by apply-
ing MPED to only one chunk of data at a time. As better explained next, these
improvements significantly reduce the overhead of the new approach.

In order to evaluate the overhead of the cloud-based method, we next briefly
compare the computational complexity of [18] and of the present approach.
First of all, in both cases the computation of MPED is the most expensive
task. In fact, even if MPED is computed by an heuristic approach [18], a
quadratic dependency on string lengths is still required due to the computation
of the edit distance. Intuitively, the complexity of this task can be expressed as
O(1 x len(s)?), where ¢ is the number of iterations required by the heuristics,
and can be tuned, whereas len(s) is the maximum length of input strings. As
previously pointed out, in [18] each MPED must be computed on the entire
history of the sensors; consequently len(s) may become quite large. On the
contrary, in the present work each MPED is computed only on a portion of
fixed length [ corresponding to one hour of operation. In [18] MPED must be
computed for all the pairs of sensors, whereas here only the MPED between
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the sensor under observation and its mate must be considered. In particular,
. . . Lo - 2
in order to issue an alert, the complexity is, intuitively, O(H* x ¢ x I"). As a
consequence, the computational improvement of the current approach can be
estimated by considering that [ is much smaller than len(s) and that H* can
be tuned and is usually a small number (we used H* = 6 in our experiments).
It is worth observing that the various parameters of the approach can be
tuned to obtain a proper balance between accuracy and execution time based
on the available hardware and sensor network.

3. Experimental analysis

In this section we present some experiments we carried out in order to eval-
uate the effectiveness of the approach. We designed a test case with a hetero-
geneous WSN including sensors working in different areas of a building. We
added different kind of synthetic interferences - the specific test case is detailed
in the next subsections. The objectives of these tests are manifold: (i) check
which kind of anomalies the edge-based method is able to identify in the given
test case; (i1) check which kind of anomalies the cloud-based method is able to
identify in the given test case; (i) verify if the edge-based method would be
enough to detect all interesting anomalies; (iv) verify if the conditional activa-
tion of the cloud-based method by alerts issued from the edge-based method
would be enough to detect interesting anomalies.

In particular, it is interesting to check the correspondence between artificially
inserted interferences and anomalies detected by both approaches; during this
task, it is important to consider also the actual impact of the interference on
the data sensed by the network. Similarly, it is important to consider possible
anomalies detected outside the time-slots regarding the artificial ones and relate
them to the testing environment.

In the following sections we first describe the test case and show collected
data; then we analyze the results obtained by the edge-based method and by the
cloud-based method separately. Next, we provide a discussion on the obtained
results and on the advantages of combining the two. Finally, we present some
possible validity threats of the approach.

3.1. Sensor network deployment setup

For the proposed experimentation, eight WSN nodes have been deployed in
a floor at DIMES, cubo 41C, University of Calabria, Italy. The used WSN nodes
consist of TelosB motes [37] running TinyOS 2.1.2 [38]. Such nodes have been
organized in a multi-hop WSN by using the Building Management Framework
(BMF) [39].

The BMF is a domain-specific framework specifically designed to efficiently
manage heterogeneous WSNs that have been scattered in buildings. Through
the BMF it is possible to quickly prototype WSN applications, realize smart
sensing/actuation, and capture, by using specific abstractions, the floor plan of
a building. BMF WSNs are controlled through a basestation that can be seen as
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Figure 2: A BMF Network example.

both a data collector and a network configurator. BMF nodes communicate by
using the BMF Communication Protocol, namely an application level protocol
built on the Collection Tree and Dissemination Protocols [40][41].

In Figure 2, an example of a BMF network together with the BMF layers at
both basestation and node sides is portrayed.

The BMF has been here used to collect every second data from light, tem-
perature and humidity sensors, compute on the nodes the average on such data,
and to send the results every minute to a BMF basestation. The BMF basesta-
tion has been enhanced with a specific filter to clean redundant packets received
from the WSN and to mask packet losses.

Figure 3 shows all the nodes deployed and their location on the floor plan
of the building involved. In particular, based on their location, the deployed
nodes have been grouped in pairs:

e nodes 1 and 124 are stuck on the window of an office. These nodes can
be reached by direct sunlight;

e nodes 17 and 27 are placed over a bookcase in an air conditioned office.
Such nodes are less influenced, with respect to nodes 1 and 124, by direct
sunlight;

e nodes 25 and 31 are placed over a desk in an air conditioned and artificially
illuminated laboratory.

The experimental tests that have been carried out and that span over 27
days, are divided in three parts, of 9 days each:
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Figure 3: Floor plan and nodes with corresponding identifiers for the experimental analysis
of the proposed framework.

e In the first part all the nodes worked in a normal situation (no induced
interferences) and are powered.

e In the second part, some interferences are introduced at the nodes 1, 17,
31, and 5. In particular, node 1 has been covered with a thick sheet of
paper and a bag full of silicon has been placed close to it; a lighted bulb
has been located adjacently to nodes 17 and 31; a bag full of silicon has
been posed close to node 5.

e In the third part, no node has been subject to interferences. However,
nodes 1, 17, 25, and 28 have been battery powered.

Raw data from sensors are shown in Figures 4-6. In the deployment of the
experiments, we first carried out the training phase of the approach for long-
term anomaly detection defined in Section 2.3.1 by setting the fixed period of
training days D7 to the first three days of nodes total acquisition time. In the
fixed period, nodes worked in a normal situation with no external interferences
and were powered. In this work, we set a threshold 6§ = 0.25 for the operating
phase and the parameter H* defined in Section 2.3.1 has been set to 6 hours. It
is worth pointing out that these values have been experimentally tuned for the
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Figure 4: Light and temperature raw sensor data for node identifiers 1, 5, 17, and 25. The
temporal window corresponding to the application of interferences to sensors 1, 5, 17, and 31
is highlighted in red for all the plots.

analyzed test case and should not be considered as general values valid in every
experimental setting. In particular, the training time D7 depends on the length
of expected operativity of the system, and on the variability of sensed data. In
fact, a long expected operativity and a high variability should suggest a longer
training period than the one adopted in these tests. Similarly, values of 6 and

18



1500 v
2
- T 10000
=
Emuo g
£ it £ 8000
5 %0 il | £ IR AT e i
L - lu - Ig G000
1 2 3 4 0 1 2 3 4
time (m) «10* time (m) «10*
(a) Node ID 27 (b) Node ID 27
1500 ©
2
. T 10000
§1ooo g
< £ 8000
B 500 g
- “]E;l e T
0_""--‘--—«*- e —————— A !_ BUOG ;_HH’-’_F -
0 1 2 3 4 0 1 2 3 4
time (m) w104 time (m) w104
(¢) Node ID 28 (d) Node ID 28
1500 v
2
s T 10000
=
Emuo g
£ £ 8000
B 500 s T
L]
A Ll # e
0 1 2 3 4 0 1 2 3 4
time (m) «10* time (m) «10*
(e) Node ID 31 (f) Node ID 31
1500 2
" =
. I 1 ﬂﬂ T 10000 ‘
21000 | @
g 1 2
= ' T 8000
m @ | |
B 500 g il .L =J"\.'. Il
UL F 6000 5
1 2 3 4 0 1 2 3 4
time (m) «10* time (m) «10*
(g) Node ID 124 (h) Node ID 124

Figure 5: Light and temperature raw sensor data for node identifiers 27, 28, 31, and 124. The
temporal window corresponding to the application of interferences to sensors 1, 5, 17, and 31
is highlighted in red for all the plots.

H* must be chosen to tune the sensitivity to data variations; in fact, low values
of these two parameters make the system more prone to issue alerts, whereas
with high values of these parameters the system might miss some anomalies.
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Figure 6: Humidity raw sensor data for node identifiers 1, 5, 17, 25, 27, 28, 31, and 124. The
temporal window corresponding to the application of interferences to sensors 1, 5, 17, and 31
is highlighted in red for all the plots.

3.2. Experimental analysis of the edge-based method for short-term anomaly
detection
In this subsection, we analyze the behavior of the online anomaly detection
algorithm, i.e. AnGe, described in Section 2.2. We run the algorithm for each
node separately, considering the measurements of all sensors for a node.
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The RBMopcp model was set to have 3 visible neurons and 10 hidden neu-
rons. This yields a total of 43 parameters which have to be stored in the memory.
The model parameters have been updated after each measurement in an online
and continuous manner. Before each update, three samples were generated by
the current model to avoid catastrophic forgetting during the learning of the
new data measured.

Figure 7 shows for each node separately how AnGe is capable to detect
anomalies at each time step. For instance, let us consider the Subplot 7(c) which
corresponds to the node 17. Usually, m ance is very close to zero suggesting that
there are no anomalies at that time step, while sometimes it is very far from
zero suggesting strong anomalies, e.g. around the 8000 minute m4,g. shows
high oscillations and values ranging between -100 and +100. This is exactly the
moment when the node 17 starts to be exposed to artificial interferences, i.e.
a light bulb in its physical neighborhood. This is reflected by the new pattern
of the sensor measurements. Further on, a bit before the 20000 minute m 4nge
shows strongly again the possible apparition of an anomaly, reaching a value of
-500. This is exactly the moment when the light bulb was removed from the
neighborhood of the node 17. Similarly, it can be clearly observed for the other
nodes which have been exposed to artificial interferences, i.e. 1, 31, and 5, how
AnGe detects the artificially introduced anomalies. Moreover, it is interesting
to see how AnGe corresponding to the nodes which were not exposed directly
to the artificial interferences, but which were close enough to the nodes with
artificial interferences, can also detect them. A more spiky behavior of AnGe
can be observed for nodes 1 and 124. These can be explained by the fact that
they were exposed to several unknown interferences as their environment was
not perfectly controlled (i.e. direct exposure to sunlight).

It is worth noting that in this paper we did not consider necessary to put
thresholds on m 4,¢e values as our goal was to show how AnGe is capable to
detect big, but also small, changes in measurements patterns. If one would
use thresholds then it could easily control the sensitivity of AnGe based on the
application requirements.

8.2.1. Analysis of Energy Consumption and Battery Duration

In this subsection, an estimation of the battery duration of TelosBs running
AnGe (Section 2.2) will be given. First of all, it is worth noting that the radio is
the main actor regarding the energy consumption of sensor nodes. In particular,
it has been shown in the literature that the radio has a consumption ten times
greater than CPU processes [42, 43]. Given this, it is very important the use
of a tool such as the BMF [39] providing data aggregation on the nodes and
allowing the effective and efficient management of the radio duty cycle. Since
AnGe has been implemented as a BMF Function, it just adds a small overhead
to the BMF energy consumption. Figure 8 shows the estimation of the mean
lifetime at different duty cycles of a node which, respectively, (i) every second
reads a sample from the desired sensors and sends a packet to its basestation,
(ii) sends a packet every minute containing the average of the data gathered
every second from such sensors, and (iii) adds the AnGe Function to the point
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Figure 7: Short-term anomaly detection. Each subplot reflects how our proposed method,
Anomaly detection with Generative Replay (AnGe), detects anomalies on a specific node.
The x-axes represent the time, the left y-axes show the sensors measurements, while the right
y-axes (red) show the values of m ange-

number (ii) and, eventually, sends the anomaly detected. As can be seen, the
BMEF allows for a significant battery saving by sending synthetic data every
minute; and the AnGe function does not add a notable load to the standard
task of data collection. In the explained estimations, the TelosBs have been
considered as powered by two 2700 mAh batteries and no supplemental energy
consumptions (besides radio, CPU, and sensors) have been considered in the
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nodes.

3.8. Experimental analysis of the cloud-based method for long-term anomaly
detection

Figures 9, 10, and 11 show the values of |x(s;, k', d) — n(s;, h')|, defined
in Section 2.3.1, for light, temperature and humidity sensors, respectively. In
order to simplify the presentation, only values greater than the threshold are
shown; these would correspond to an alert. In this case, setting a threshold was
important since the formula measures even smooth differences between expected
and computed values and, consequently, without a threshold it would have been
difficult to read the graphs. Obviously, also in this case, an accurate tuning of
the threshold could easily control the sensitivity of the approach.

Let us first consider light values. In particular, as far as node 1, it is inter-
esting to observe that, even if an artificial interference was added, no long-term
anomaly is alerted. This result is actually correct. In fact, the thick sheet of
paper added in front of the sensor reduces the amount of light perceived by
the sensor, but it does not prevent it to detect external light variations over
long terms. This is also consistent with the result obtained by the short-term
approach, which identifies many small environment interferences. On the con-
trary, nodes 17 and 31, which were disturbed by a lighted bulb, became almost
unable to detect light variations (see Figures 4 and 5); and in fact a long-term
alert during all the test period is fired.

It is interesting to stress that, in a possible application of the short-long term
combined approach, the short-term method activates the long-term one, which
may confirm the persistence of an anomalous situation or it may categorize the
alert just as occasional.

Interestingly, node 124 is completely unaffected by long-term anomalies; this
is also right because it did not receive external interferences and the interference
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Figure 9: Alerts (with over-threshold values) for long-term anomaly detection of light sensors.
The x-axis represents the time, the y-axis indicates the value of |x(s;, h’,d) — n(s;, h')|.

on the adjacent sensor is totally local (a sheet of paper). The same does not
hold for nodes 25 and 27 which are near to sensors disturbed by a lighted bulb
(17 and 31); as a consequence, they are slightly affected too. This result is again
consistent with the results of the short-term approach.

Finally, as far as light results for nodes 5 and 28 are concerned, we can
observe some spikes over all the period, but not particularly constant to motivate
a long-term anomaly, especially during the artificial interference. This can be
motivated by both the fact that they are positioned in a corridor which generates
highly irregular data and by observing that, in this case, interference is about
humidity caused by the bag full of silicon.

Results for temperature show no particular alerts, except for node 25. This
is again consistent, since no artificial interference on temperature was actually
introduced, and the alerts on node 25 correspond to the last part of the exper-
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Figure 10: Alerts (with over-threshold values) for long-term anomaly detection of temperature
sensors. The x-axis represents the time, the y-axis indicates the value of |x(s;, h',d)—n(s;, h')|.

iment, when the node was battery powered.

Finally, as far as humidity is concerned, we observe consistent long-term
alerts only on node 1, where a silicon bag was placed close to it. As for node
5, disturbed by the other silicon bag, we observe no long-term alerts. If we
observe the raw data for humidity shown in Figure 6 we may actually observe
no particular variations in trend values. Again, this result is consistent also
with short-term analysis, which was able to point out the time instants when
the bag was put/removed beside the sensor.

8.8.1. Analysis of performances and overhead of the cloud-based method

Since the algorithm for computing MPED in the cloud-based method is
the most computationally demanding task of the proposed approach, we next
present an analysis of its performances and overhead. The objective of these
tests is to show effectiveness and scalability of the proposed approach. All tests
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Figure 11: Alerts (with over-threshold values) for long-term anomaly detection of humidity
sensors. The x-axis represents the time, the y-axis indicates the value of |x(s;, h',d)—n(s;, h')|.

presented in this section have been executed on a server equipped with an Intel
Xeon X3430 processor and 4 GB of RAM running the Ubuntu Linux kernel
2.6.26-2-686-bigmem SMP 1686 GNU/Linux operating system

First of all, it is worth recalling that the implementation of MPED computa-
tion needs to resort to some heuristics, given the NP-Hardness of the problem.
In the implementation of the method we considered several heuristics, based
on different strategies. Here we show some results for the local search heuristic
Steepest Ascent Hill Climbing algorithm with random restart (hereafter HC),
and for the population-based metaheuristics Evolution Strategy (hereafter, ES).
Performance comparison of these two heuristics for a given a complex set of in-
put parameters is shown in Figure 12, where it is clear that ES outperforms
HC both for number of iterations needed to reach the best MPED value and for
precision (it reaches a lower value of MPED than HC). A similar behavior can
be observed for different input parameter sets.
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Figure 12: Comparison of two heuristics for MPED, ES and HC, with |II| = 14 len(s) = 2000
and 1 = m = 4.

In order to verify if the good performances of ES actually do not degradate
the quality of the computation, we evaluated its precision with respect to an
exhaustive approach computing the exact solution. Precision is computed as
follows: let dgx be the MPED of an instance using the exhaustive approach,
i.e., the optimum, and let dgg be the MPED computed by the ES solution. We
define precision PgS as

dps —dpx
B (3)

Table 2 reports obtained results. Note that a value Pgg = 1.00 in the
table indicates that ES reached precisely the same solution as the exhaustive
approach. From the analysis of Table 2 it is possible to observe that ES always
reaches a precision equal or very close to 1.00 on very different sets of input
parameters. These results show the effectiveness of the approach in computing
reliable MPED distances.

Finally, in order to evaluate the scalability of the approach, we measured
the runtime of MPED computation for increasing string lengths and different
values of alphabet sizes. Results are shown in Figure 13 which demonstrates a
good scalability of the approach and fairly acceptable execution times, below
one second, even for the hardest configurations.

Pps =1—

3.4. Discussion

The short-term approach clearly identifies potential anomalies signaled by
the maxima values of |mange| (Figure 7(a)) for node 1, the node exposed to a
thick sheet of paper. The long-term approach for node 1 signals an anomaly
for humidity only (Figure 11(a)). As explained in the previous section, this is
consistent.
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Table 2: Obtained precision Pgg of ES Heuristics.

len(s)
7 | | 500 1000 2000 3500 5000

16 {099 1.00 1.00 1.00 1.00
3 18 | 1.00 099 1.00 1.00 1.00
20 | 1.00 1.00 1.00 1.00 1.00

16 | 1.00 1.00 1.00 1.00 1.00
4 18 099 1.00 1.00 1.00 1.00
20 1099 099 1.00 1.00 1.00

16 | 1.00 1.00 1.00 1.00 1.00
5 18 | 1.00 1.00 1.00 1.00 1.00
20 | 1.00 1.00 1.00 1.00 1.00

16 | 1.00 1.00 1.00 1.00 1.00
6 18 | 099 1.00 1.00 1.00 1.00
20 | 1.00 099 1.00 1.00 1.00

Node 124, the node close to node 1 but not exposed to any impairments, expe-
riences several short-term alerts (Figure 7(h)) but no long-term ones (Figures
9(h), 10(h), 11(h)). As a matter of facts, by analyzing the patterns of short-term
alerts of nodes 1 and 124 we observe that they are almost identical, similarly to
the overall trends of temperature, humidity and light measured by both sensors.
It can be then concluded that short-term alerts were issued by the environment.

As far as node 5 is concerned, which was exposed to a bag full of silicon,
the short-term approach issues two spikes for |mange| (Figure 7(b)), but no
consistent long-term anomaly is issued (Figures 9(b), 10(b), 11(b)). As a matter
of facts, the short-term approach identifies the moments when the bag was
placed and removed, but this did not alter the measurements for humidity, as
shown in Figure 6.

Node 5 is close to node 28, which experiences similar behavior on short-term
analysis (cfr Figures 7(d) and 7(f)). However, only small alerts on light for
long-term anomalies are issued for this node (Figure 9(f)), and these are mostly
outside the artificial interference period.

For node 17, disturbed with a lighted bulb, the short-term approach properly
identifies the beginning and the end of the interference period (see Figure 7(c))
and the long-term approach confirms the anomaly for light sensor (see Figure
9(c)) while issuing no alerts for temperature and humidity (Figures 10(c) and
11(c)). A similar behavior is observed on node 27 (Figures 7(e), 9(e), 10(e),
11(e)) which was close to node 17 and, consequently, also influenced by the
light of the bulb.

Also for node 31, the other node influenced by a lighted bulb, the approach
properly identifies the interference, with start and end points identified by the
short-term approach (Figure 7(g)) and interference period identified on light
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Figure 13: Runtime of the computation of L1 1y(s;, s;) against len(s) for different values of
alphabet size [II|.

sensor by the long-term approach (Figure 9(g)). In this case, for node 25, the one
close to node 31, the short-term approach issues alerts (Figure 7(d)) which are
not confirmed by the long-term approach (Figures 9(d), 10(d), 11(d)), probably
because the area where the nodes were positioned was much bigger than the
area where nodes 17 and 27 were placed (see Figure 3) and consequently, node
25 was less influenced by the nearby light on node 31.

Almost no alerts are issued in the period when the nodes were battery pow-
ered. As a matter of facts, looking at raw data shown in Figures 4, 5, and 6, no
real variations in sensed data can be observed in this case.

Summarizing the overall results, we can observe that experiments confirm
the intuition about the different nature of anomalies detected by the two ap-
proaches. These can be seen as complementary tools for anomaly detection.
Both correctly detect real anomalies at different stages. However, both are af-
fected by false positive anomaly detection phenomena. This problem can be
significantly reduced by using the short-term approach to “trigger” long-term
observations, which can also drill down the analysis from nodes to single sensors.

3.5. Threat to validity

In the previous sections we showed that both the short-term method and
the long-term method are able to detect anomalies that have been artificially
inserted in the test case. Moreover, the combination of the two approaches al-
lows to trigger the more computationally demanding task of long-term anomaly
detection only when needed, and only on the sensors that need attention. Nev-
ertheless, the long-term approach provides its results almost in real time, since it
works on previously stored data and, consequently, the identification of relevant
anomalies can be carried out promptly. Clearly, the approach is not intended to
be a solution to every problem in anomaly detection; here we analyze potential
weaknesses and limitations that may result in inability to identify anomalies.

First of all, it is worth recalling that the short-term method is based on an
ANN and, as it usually happens in this context, its ability to properly classify
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anomalies strongly depends on the kind of signals it is trained on. Then, it
may happen that the short-term approach misses some kind of anomalies, such
as drifts. Moreover, due to the intrinsic nature of the method, it may be in
trouble in identifying “slowly appearing” anomalies, i.e. anomalies that start
with very smooth changes in the data. Observe that, in our approach, if the
short-term method does not identify an anomaly, then the long-term method
is not activated. As a consequence, the ability to identify certain kinds of
anomalies may be limited by this fact.

On the long-term method side, it is worth pointing out that its ability to
identify anomalies is significantly related to the presence of good correlations
between pairs of sensors, even if such correlations may be not obvious or evi-
dent. As explained in previous sections, related sensors must not necessarily be
near in space or sensing the same measure; moreover, each sensor may have a
different mate in different time slots. As a consequence, the possibility to iden-
tify a strong correlation between each pair of sensors is high, and it increases in
complex networks including several nodes. However, there is still the possibility
that correlations are weak for some sensors; in this case, the ability to iden-
tify real long-term anomalies may be flawed. In more detail, in case of a weak
correlation, the difference between the expected data and the sensed one may
easily be higher than a threshold, resulting in several false positive long-term
alerts. However, this problem is mitigated in our framework by the fact that the
long-term method is activated only if a short-term anomaly is detected. Possible
causes of a weak correlation are significantly variable signals missing any form
of characterization.

4. Conclusions

Automatic anomaly detection in heterogeneous wireless sensor networks is
a very challenging task. The signals captured by the sensors are affected by
natural environmental variations that can mask signals variations caused by
anomalies. A huge amount of information is captured by WSNs and there
is a need to optimize the data analysis problem devising algorithms for local
data preprocessing aiming at reducing the amount of data to be transferred for
further processing.

The approach proposed in this paper explores how a combination of short-
long term algorithms can correctly identify anomalies in a WSN. The proposed
short-term approach has shown good performances for a local identification of
potential anomalies and identifying temporal windows of potential interest to
be transferred to a cloud service for further long-term analysis. The long-term
approach has shown good performances for identifying the temporal windows
affected by anomalies. Nodes close to each other can results in signalling a
double alert nevertheless the impact of such false positive result is not so relevant
considering that a manual intervention will affect a single location.

Overall we demonstrated how a combined use of short-long term approaches
may reduce the drawbacks of both, i.e. false positives and computational re-
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quirements, while taking advantage of the best qualities of both, i.e. timeliness
and accuracy.

As far as future work is concerned, we plan to improve the coupling of
the two approaches by automating the process and fine-tuning the thresholds.
Moreover, the approach can also be improved to detect other kinds of anomalies
that currently cannot be detected, like slowly changing values of sensed data;
these are also known as drifts. To this purpose we are exploring the possibility to
adapt a previous learning approach presented in [5], where it is shown that the
ability to detect drifts by online approaches is strongly related to the learning
rate and that usually the detection is made at the start of the drift, while the
rest of the drift period is not flagged as anomalous. Our combined approach
could overcome this issue. In fact, the online part, with the modified algorithms,
may identify the start of the drift and then activate the offline approach which
could flag the drift period.
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