M J Sweet
Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots
Sweet, M J; Singleton, Ian
Abstract
Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP.
Citation
Sweet, M. J., & Singleton, I. (2015). Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots. Journal of Nanoparticle Research, 17, 448. https://doi.org/10.1007/s11051-015-3246-4
Journal Article Type | Article |
---|---|
Online Publication Date | Nov 21, 2015 |
Publication Date | 2015 |
Deposit Date | Jan 13, 2016 |
Publicly Available Date | Jan 13, 2016 |
Print ISSN | 1388-0764 |
Electronic ISSN | 1572-896X |
Publisher | BMC |
Peer Reviewed | Peer Reviewed |
Volume | 17 |
Pages | 448 |
DOI | https://doi.org/10.1007/s11051-015-3246-4 |
Keywords | AgNP; Fungi; Pine; Nanoparticle; Environmental effects; |
Public URL | http://researchrepository.napier.ac.uk/id/eprint/9428 |
Publisher URL | http://dx.doi.org/10.1007/s11051-015-3246-4 |
Contract Date | Jan 13, 2016 |
Files
Soil Contamination With Silver Nanoparticles Reduces Bishop Pine Growth And Ectomycorrhizal Diversity On Pine Roots
(556 Kb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by-nc/4.0/
You might also like
Effect of Ozone Treatment on Inactivation of Escherichia coli and Listeria sp. on Spinach
(2015)
Journal Article
Fungi at a Small Scale: Spatial Zonation of Fungal Assemblages around Single Trees
(2013)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search