Aisling Doyle
The development of a numerical temperature algorithm to predict the indoor temperature of an electric vehicle's cabin space.
Doyle, Aisling
Authors
Abstract
Climate change is a significant issue in today’s society as countries work towards decarbonising the economic sectors that contribute to significant greenhouse gas emissions. The electric vehicle (EV) is proposed as a solution to reduce the level of emissions in the transport sector. However, if an EV is powered by an electrical fossil fuelled source, their penetration into the UK market will have minimal mitigating effects, as emissions will simply shift from the transport sector to the energy production sector.
Limited research has evaluated the loss of propulsion energy as a result of operating on-board climate control systems, and has focused more on traction energy. Unlike conventional fossil fuelled vehicles, EVs do not produce waste heat to warm the interior space of the vehicle. The present research found that up to 30% of a vehicle’s total energy consumed per trip is allocated to heating requirements, thus the present research developed a temperature predicting numerical algorithm to compute indoor cabin temperatures. The vehicle was exposed to ambient climate conditions with an auxiliary heating or cooling system to evaluate this thermal model. The numerical algorithm could predict the temperature of a cabin space under solar space heating conditions with 62% more accuracy than previously developed models when comparing the Root Mean Square Error performance indicator. The presently developed temperature prediction algorithm may be applied to a route planning application, thus indicating the electrical energy required by the vehicle’s battery for users to increase or decrease the desired temperature level.
Additionally, this study investigated the ability of a renewable energy resource to decarbonise the vehicle’s built-in climate control system. Integrating solar panels on the roof and bonnet of an EV to power an auxiliary climate control system reduced the electrical loading required to reach the occupant’s thermal comfort. By installing an auxiliary heating system to increase cabin temperature by 2 or 5°C, the present research found that energy consumption of the built-in climate control system was reduced by 22% or 57%, respectively. This illuminates the potential an auxiliary climate control system has in improving the thermal performance of EVs.
Citation
Doyle, A. The development of a numerical temperature algorithm to predict the indoor temperature of an electric vehicle's cabin space. (Thesis). Edinburgh Napier University. http://researchrepository.napier.ac.uk/Output/1254444
Thesis Type | Thesis |
---|---|
Deposit Date | Jul 23, 2018 |
Publicly Available Date | Jul 23, 2018 |
Keywords | Climate Change, Indoor Temperature, Electric Vehicle, Emissions, |
Public URL | http://researchrepository.napier.ac.uk/Output/1254444 |
Contract Date | Jul 23, 2018 |
Award Date | Jun 27, 2018 |
Files
The development of a numerical temperature algorithm to predict the indoor temperature of an electric vehicle's cabin space
(10.6 Mb)
PDF
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search