Skip to main content

Research Repository

Advanced Search

Outputs (23)

A comprehensive assessment of accuracy of adaptive integration of cut cells for laminar fluid-structure interaction problems (2022)
Journal Article
Kadapa, C., Wang, X., & Mei, Y. (2022). A comprehensive assessment of accuracy of adaptive integration of cut cells for laminar fluid-structure interaction problems. Computers and Mathematics with Applications, 122, 1-18. https://doi.org/10.1016/j.camwa.2022.07.006

Finite element methods based on cut-cells are becoming increasingly popular because of their advantages over formulations based on body-fitted meshes for problems with moving interfaces. In such methods, the cells (or elements) which are cut by the i... Read More about A comprehensive assessment of accuracy of adaptive integration of cut cells for laminar fluid-structure interaction problems.

A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19 (2022)
Journal Article
Mehade Hussain, S., Goel, S., Kadapa, C., & Aristodemou, E. (2022). A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19. Materials Today: Proceedings, 64(3), 1349-1356. https://doi.org/10.1016/j.matpr.2022.03.724

The use of computational fluid dynamics (CFD) to simulate the spread of COVID19 and many other airborne diseases, especially in an indoor environment needs accurate understanding of dispersion models. Modelling the transport/dispersion of vapour drop... Read More about A short review of vapour droplet dispersion models used in CFD to study the airborne spread of COVID19.

A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers (2022)
Journal Article
Kadapa, C., & Hossain, M. (2022). A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers. Mechanics of Materials, 166, Article 104207. https://doi.org/10.1016/j.mechmat.2021.104207

The last decade has witnessed the emergence of magneto-active polymers (MAPs) as one of the most advanced multi-functional soft composites. Depending on the magnetisation mechanisms and responsive behaviour, MAPs are mainly classified as hard magneti... Read More about A unified numerical approach for soft to hard magneto-viscoelastically coupled polymers.

Analytical study on growth-induced axisymmetric deformations and shape-control of circular hyperelastic plates (2021)
Journal Article
Li, Z., Wang, Q., Du, P., Kadapa, C., Hossain, M., & Wang, J. (2022). Analytical study on growth-induced axisymmetric deformations and shape-control of circular hyperelastic plates. International Journal of Engineering Science, 170, Article 103594. https://doi.org/10.1016/j.ijengsci.2021.103594

Growth of soft material plates is commonly observed in nature. However, the relations between growth fields and shape changes of the plate samples remain poorly understood. The current work aims to derive some analytical results for the growth-induce... Read More about Analytical study on growth-induced axisymmetric deformations and shape-control of circular hyperelastic plates.

A Unified Simulation Framework for Fluid–Structure–Control Interaction Problems with Rigid and Flexible Structures (2021)
Journal Article
Kadapa, C. (2022). A Unified Simulation Framework for Fluid–Structure–Control Interaction Problems with Rigid and Flexible Structures. International Journal of Computational Methods, 19(01), Article 2150052. https://doi.org/10.1142/s0219876221500523

Vortex-induced vibrations are often unwanted as they can lead to catastrophic failure of the associated structures, warranting countermeasures to mitigate or suppress these vibrations. Due to the nature of nonlinearities in fluid–structure interactio... Read More about A Unified Simulation Framework for Fluid–Structure–Control Interaction Problems with Rigid and Flexible Structures.

A novel semi-implicit scheme for elastodynamics and wave propagation in nearly and truly incompressible solids (2021)
Journal Article
Kadapa, C. (2021). A novel semi-implicit scheme for elastodynamics and wave propagation in nearly and truly incompressible solids. Acta mechanica, 232(6), 2135-2163. https://doi.org/10.1007/s00707-020-02883-5

This paper presents a novel semi-implicit scheme for elastodynamics and wave propagation problems in nearly and truly incompressible material models. The proposed methodology is based on the efficient computation of the Schur complement for the mixed... Read More about A novel semi-implicit scheme for elastodynamics and wave propagation in nearly and truly incompressible solids.

A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics (2021)
Journal Article
Kadapa, C. (2021). A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics. Engineering Structures, 234, Article 111755. https://doi.org/10.1016/j.engstruct.2020.111755

This paper presents a simplified implementation of the arc-length method for computing the equilibrium paths of nonlinear structural mechanics problems using the finite element method. In the proposed technique, the predictor is computed by extrapola... Read More about A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics.

On the advantages of mixed formulation and higher-order elements for computational morphoelasticity (2020)
Journal Article
Kadapa, C., Li, Z., Hossain, M., & Wang, J. (2021). On the advantages of mixed formulation and higher-order elements for computational morphoelasticity. Journal of the Mechanics and Physics of Solids, 148, Article 104289. https://doi.org/10.1016/j.jmps.2020.104289

In this paper, we present a mixed displacement–pressure finite element formulation that can successively model compressible as well as truly incompressible behaviour in growth-induced deformations significantly observed in soft materials. Inf–sup sta... Read More about On the advantages of mixed formulation and higher-order elements for computational morphoelasticity.

A robust and computationally efficient finite element framework for coupled electromechanics (2020)
Journal Article
Kadapa, C., & Hossain, M. (2020). A robust and computationally efficient finite element framework for coupled electromechanics. Computer Methods in Applied Mechanics and Engineering, 372, Article 113443. https://doi.org/10.1016/j.cma.2020.113443

Electro-active polymers (EAPs) are increasingly becoming popular materials for actuators, sensors, and energy harvesters. To simulate the complex behaviour of actuators under coupled loads, particularly in the realm of soft robotics, biomedical engin... Read More about A robust and computationally efficient finite element framework for coupled electromechanics.

A second-order accurate non-intrusive staggered scheme for the interaction of ultra-lightweight rigid bodies with fluid flow (2020)
Journal Article
Kadapa, C. (2020). A second-order accurate non-intrusive staggered scheme for the interaction of ultra-lightweight rigid bodies with fluid flow. Ocean Engineering, 217, Article 107940. https://doi.org/10.1016/j.oceaneng.2020.107940

This paper presents a staggered scheme with second-order temporal accuracy for fluid–structure interaction problems involving ultra-lightweight rigid bodies. The staggered scheme is based on the Dirichlet–Neumann coupling and is non-intrusive. First,... Read More about A second-order accurate non-intrusive staggered scheme for the interaction of ultra-lightweight rigid bodies with fluid flow.