Skip to main content

Research Repository

Advanced Search

Outputs (35)

A Secure Authentication Framework for Consumer Mobile Crowdsourcing Networks (2024)
Journal Article
Aldosary, A., Tanveer, M., Ahmad, M., Maghrabi, L. A., Ahmed, E. A., Hussain, A., & El-Latif, A. A. A. (2024). A Secure Authentication Framework for Consumer Mobile Crowdsourcing Networks. IEEE Transactions on Consumer Electronics, https://doi.org/10.1109/tce.2024.3473930

The Mobile crowdsourcing network (MCN) leverages collaborative intelligence to solve complex tasks through group cooperation. It comprises three main components: the end-user, the service provider, and the mobile user. The end-user requests crowd-sen... Read More about A Secure Authentication Framework for Consumer Mobile Crowdsourcing Networks.

Open-Pose 3D zero-shot learning: Benchmark and challenges (2024)
Journal Article
Zhao, W., Yang, G., Zhang, R., Jiang, C., Yang, C., Yan, Y., Hussain, A., & Huang, K. (2025). Open-Pose 3D zero-shot learning: Benchmark and challenges. Neural Networks, 181, Article 106775. https://doi.org/10.1016/j.neunet.2024.106775

With the explosive 3D data growth, the urgency of utilizing zero-shot learning to facilitate data labeling becomes evident. Recently, methods transferring language or language-image pre-training models like Contrastive Language-Image Pre-training (CL... Read More about Open-Pose 3D zero-shot learning: Benchmark and challenges.

Development of multi-modal hearing aids to enhance speech perception in noise (2024)
Presentation / Conference Contribution
Goman, A., Gogate, M., Hussain, A., Dashtipour, K., Buck, B., Akeroyd, M., Anwar, U., Arslan, T., Hardy, D., & Hussain, A. (2024, September). Development of multi-modal hearing aids to enhance speech perception in noise. Presented at World Congress of Audiology, Paris, France

MTFDN: An image copy‐move forgery detection method based on multi‐task learning (2024)
Journal Article
Liang, P., Tu, H., Hussain, A., & Li, Z. (online). MTFDN: An image copy‐move forgery detection method based on multi‐task learning. Expert Systems, https://doi.org/10.1111/exsy.13729

Image copy-move forgery, where an image region is copied and pasted within the same image, is a simple yet widely employed manipulation. In this paper, we rethink copy-move forgery detection from the perspective of multi-task learning and summarize t... Read More about MTFDN: An image copy‐move forgery detection method based on multi‐task learning.

Transition-aware human activity recognition using an ensemble deep learning framework (2024)
Journal Article
Khan, S. I., Dawood, H., Khan, M., F. Issa, G., Hussain, A., Alnfiai, M. M., & Adnan, K. M. (2025). Transition-aware human activity recognition using an ensemble deep learning framework. Computers in Human Behavior, 162, Article 108435. https://doi.org/10.1016/j.chb.2024.108435

Understanding human activities in daily life is of utmost importance, especially in the context of personalized and adaptive ubiquitous learning. Although existing HAR systems perform well-identifying activities based on their inter-spatial and tempo... Read More about Transition-aware human activity recognition using an ensemble deep learning framework.

Federated learning‐driven dual blockchain for data sharing and reputation management in Internet of medical things (2024)
Journal Article
Gan, C., Xiao, X., Zhu, Q., Jain, D. K., Saini, A., & Hussain, A. (online). Federated learning‐driven dual blockchain for data sharing and reputation management in Internet of medical things. Expert Systems, https://doi.org/10.1111/exsy.13714

In the Internet of Medical Things (IoMT), the vulnerability of federated learning (FL) to single points of failure, low-quality nodes, and poisoning attacks necessitates innovative solutions. This article introduces a FL-driven dual-blockchain approa... Read More about Federated learning‐driven dual blockchain for data sharing and reputation management in Internet of medical things.

A Comprehensive Survey on Generative AI for Metaverse: Enabling Immersive Experience (2024)
Journal Article
Chamola, V., Sai, S., Bhargava, A., Sahu, A., Jiang, W., Xiong, Z., Niyato, D., & Hussain, A. (2024). A Comprehensive Survey on Generative AI for Metaverse: Enabling Immersive Experience. Cognitive Computation, 16, 3286–3315. https://doi.org/10.1007/s12559-024-10342-9

Generative Artificial Intelligence models are Artificial Intelligence models that generate new content based on a prompt or input. The output content can be in various forms, including text, images, and video. Metaverse refers to a virtual world wher... Read More about A Comprehensive Survey on Generative AI for Metaverse: Enabling Immersive Experience.

Exploring Reinforced Class Separability and Discriminative Representations for SAR Target Open Set Recognition (2024)
Journal Article
Gao, F., Luo, X., Lang, R., Wang, J., Sun, J., & Hussain, A. (2024). Exploring Reinforced Class Separability and Discriminative Representations for SAR Target Open Set Recognition. Remote Sensing, 16(17), Article 3277. https://doi.org/10.3390/rs16173277

Current synthetic aperture radar (SAR) automatic target recognition (ATR) algorithms primarily operate under the closed-set assumption, implying that all target classes have been previously learned during the training phase. However, in open scenario... Read More about Exploring Reinforced Class Separability and Discriminative Representations for SAR Target Open Set Recognition.

Context-Aware Audio-Visual Speech Enhancement Based on Neuro-Fuzzy Modelling and User Preference Learning (2024)
Journal Article
Chen, S., Kirton-Wingate, J., Doctor, F., Arshad, U., Dashtipour, K., Gogate, M., Halim, Z., Al-Dubai, A., Arslan, T., & Hussain, A. (2024). Context-Aware Audio-Visual Speech Enhancement Based on Neuro-Fuzzy Modelling and User Preference Learning. IEEE Transactions on Fuzzy Systems, 32(10), 5400-5412. https://doi.org/10.1109/tfuzz.2024.3435050

It is estimated that by 2050 approximately one in ten individuals globally will experience disabling hearing impairment. In the presence of everyday reverberant noise, a substantial proportion of individual users encounter challenges in speech compre... Read More about Context-Aware Audio-Visual Speech Enhancement Based on Neuro-Fuzzy Modelling and User Preference Learning.

Utilizing ubiquitous learning to foster sustainable development in rural areas: Insights from 6G technology (2024)
Journal Article
Liu, Y., Razman, M. R., Syed Zakaria, S. Z., Ern, L. K., Hussain, A., & Chamola, V. (2024). Utilizing ubiquitous learning to foster sustainable development in rural areas: Insights from 6G technology. Computers in Human Behavior, 161, Article 108418. https://doi.org/10.1016/j.chb.2024.108418

Rural education frequently grapples with demanding situations such as isolation, confined assets, and a virtual divide. The emergence of the sixth generation (6G) era, characterized by its speedy connectivity, minimal latency, and robust reliability,... Read More about Utilizing ubiquitous learning to foster sustainable development in rural areas: Insights from 6G technology.