Skip to main content

Research Repository

Advanced Search

Outputs (5)

Beyond the Hype: Benchmarking LLM-Evolved Heuristics for Bin Packing (2025)
Presentation / Conference Contribution
Sim, K., Hart, E., & Renau, Q. (2025, April). Beyond the Hype: Benchmarking LLM-Evolved Heuristics for Bin Packing. Presented at EvoSTAR 2025, Trieste, Italy

Coupling Large Language Models (LLMs) with Evolutionary Algorithms has recently shown significant promise as a technique to design new heuristics that outperform existing methods, particularly in the field of combinatorial optimisation. An escalating... Read More about Beyond the Hype: Benchmarking LLM-Evolved Heuristics for Bin Packing.

Algorithm Selection with Probing Trajectories: Benchmarking the Choice of Classifier Model (2025)
Presentation / Conference Contribution
Renau, Q., & Hart, E. (2025, April). Algorithm Selection with Probing Trajectories: Benchmarking the Choice of Classifier Model. Presented at EvoSTAR 2025, Trieste, Italy

Recent approaches to training algorithm selectors in the black-box optimisation domain have advocated for the use of training data that is 'algorithm-centric' in order to encapsulate information about how an algorithm performs on an instance, rather... Read More about Algorithm Selection with Probing Trajectories: Benchmarking the Choice of Classifier Model.

An Evaluation of Domain-agnostic Representations to Enable Multi-task Learning in Combinatorial Optimisation (2025)
Presentation / Conference Contribution
Stone, C., Renau, Q., Miguel, I., & Hart, E. (2024, June). An Evaluation of Domain-agnostic Representations to Enable Multi-task Learning in Combinatorial Optimisation. Presented at 18th Learning and Intelligent Optimization Conference, Ischia, Italy

We address the question of multi-task algorithm selection in combinatorial optimisation domains. This is motivated by a desire to simplify the algorithm-selection pipeline by developing a more general classifier that does not require specialised info... Read More about An Evaluation of Domain-agnostic Representations to Enable Multi-task Learning in Combinatorial Optimisation.

Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances (2024)
Presentation / Conference Contribution
Hart, E., Renau, Q., Sim, K., & Alissa, M. (2024, September). Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances. Presented at 18th International Conference on Parallel Problem Solving From Nature PPSN 2024, Hagenburg, Austria

Deep neural networks (DNN) are increasingly being used to perform algorithm-selection in combinatorial optimisation domains, particularly as they accommodate input representations which avoid designing and calculating features. Mounting evidence fro... Read More about Evaluating the Robustness of Deep-Learning Algorithm-Selection Models by Evolving Adversarial Instances.

On the Utility of Probing Trajectories for Algorithm-Selection (2024)
Presentation / Conference Contribution
Renau, Q., & Hart, E. (2024, April). On the Utility of Probing Trajectories for Algorithm-Selection. Presented at EvoStar 2024, Aberystwyth, UK

Machine-learning approaches to algorithm-selection typically take data describing an instance as input. Input data can take the form of features derived from the instance description or fitness landscape , or can be a direct representation of the ins... Read More about On the Utility of Probing Trajectories for Algorithm-Selection.