Skip to main content

Research Repository

Advanced Search

Outputs (16)

Learning Descriptors for Novelty-Search Based Instance Generation via Meta-evolution (2024)
Presentation / Conference Contribution
Marrero, A., Segredo, E., León, C., & Hart, E. (2024, July). Learning Descriptors for Novelty-Search Based Instance Generation via Meta-evolution. Presented at GECCO '24: Genetic and Evolutionary Computation Conference, Melbourne, Australia

The ability to generate example instances from a domain is important in order to benchmark algorithms and to generate data that covers an instance-space in order to train machine-learning models for algorithm selection. Quality-Diversity (QD) algorit... Read More about Learning Descriptors for Novelty-Search Based Instance Generation via Meta-evolution.

Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains (2024)
Journal Article
Marrero, A., Segredo, E., Leon, C., & Hart, E. (online). Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains. Evolutionary Computation, https://doi.org/10.1162/evco_a_00350

Gathering sufficient instance data to either train algorithm-selection models or understand algorithm footprints within an instance space can be challenging. We propose an approach to generating synthetic instances that are tailored to perform well w... Read More about Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains.

Generating diverse and discriminatory knapsack instances by searching for novelty in variable dimensions of feature-space (2023)
Presentation / Conference Contribution
Marrero, A., Segredo, E., Hart, E., Bossek, J., & Neumann, A. (2023, July). Generating diverse and discriminatory knapsack instances by searching for novelty in variable dimensions of feature-space. Presented at GECCO 2023, Lisbon, Portugal

Generating new instances via evolutionary methods is commonly used to create new benchmarking data-sets, with a focus on attempting to cover an instance-space as completely as possible. Recent approaches have exploited Quality-Diversity methods to ev... Read More about Generating diverse and discriminatory knapsack instances by searching for novelty in variable dimensions of feature-space.

DIGNEA: A tool to generate diverse and discriminatory instance suites for optimisation domains (2023)
Journal Article
Marrero, A., Segredo, E., León, C., & Hart, E. (2023). DIGNEA: A tool to generate diverse and discriminatory instance suites for optimisation domains. SoftwareX, 22, Article 101355. https://doi.org/10.1016/j.softx.2023.101355

To advance research in the development of optimisation algorithms, it is crucial to have access to large test-beds of diverse and discriminatory instances from a domain that can highlight strengths and weaknesses of different algorithms. The DIGNEA t... Read More about DIGNEA: A tool to generate diverse and discriminatory instance suites for optimisation domains.

Optimising Real-World Traffic Cycle Programs by Using Evolutionary Computation (2019)
Journal Article
Segredo, E., Luque, G., Segura, C., & Alba, E. (2019). Optimising Real-World Traffic Cycle Programs by Using Evolutionary Computation. IEEE Access, 7, 43915-43932. https://doi.org/10.1109/ACCESS.2019.2908562

Traffic congestion, and the consequent loss of time, money, quality of life, and higher pollution, is currently one of the most important problems in cities, and several approaches have been proposed to reduce it. In this paper, we propose a novel for... Read More about Optimising Real-World Traffic Cycle Programs by Using Evolutionary Computation.

A Cooperative Learning Approach for the Quadratic Knapsack Problem (2018)
Presentation / Conference Contribution
Lalla-Ruiz, E., Segredo, E., & Voß, S. (2018). A Cooperative Learning Approach for the Quadratic Knapsack Problem. In Learning and Intelligent Optimization Conference (LION12) (31-35). https://doi.org/10.1007/978-3-030-05348-2_3

The Quadratic Knapsack Problem (QKP) is a well-known optimization problem aimed to maximize a quadratic objective function subject to linear capacity constraints. It has several applications in different fields such as telecommunications, graph theor... Read More about A Cooperative Learning Approach for the Quadratic Knapsack Problem.

Selection methods and diversity preservation in many-objective evolutionary algorithms (2018)
Journal Article
Martí, L., Segredo, E., Sánchez-Pi, N., & Hart, E. (2018). Selection methods and diversity preservation in many-objective evolutionary algorithms. Data Technologies and Applications, https://doi.org/10.1108/dta-01-2018-0009

Purpose – One of the main components of multi-objective, and therefore, many-objective evolutionary algorithms is the selection mechanism. It is responsible for performing two main tasks simultaneously. First, it has to promote convergence by selecti... Read More about Selection methods and diversity preservation in many-objective evolutionary algorithms.

A novel similarity-based mutant vector generation strategy for differential evolution (2018)
Presentation / Conference Contribution
Segredo, E., Lalla-Ruiz, E., & Hart, E. (2018, July). A novel similarity-based mutant vector generation strategy for differential evolution. Presented at The Genetic and Evolutionary Computation Conference 2018 (GECCO 2018), Kyoto, Japan

The mutant vector generation strategy is an essential component of Differential Evolution (DE), introduced to promote diversity, resulting in exploration of novel areas of the search space. However, it is also responsible for promoting intensificatio... Read More about A novel similarity-based mutant vector generation strategy for differential evolution.

On the performance of the hybridisation between migrating birds optimisation variants and differential evolution for large scale continuous problems (2018)
Journal Article
Voß, S., Segredo, E., Lalla-Ruiz, E., Hart, E., & Voss, S. (2018). On the performance of the hybridisation between migrating birds optimisation variants and differential evolution for large scale continuous problems. Expert Systems with Applications, 102, 126-142. https://doi.org/10.1016/j.eswa.2018.02.024

Migrating Birds Optimisation (mbo) is a nature-inspired approach which has been shown to be very effective when solving a variety of combinatorial optimisation problems. More recently, an adaptation of the algorithm has been proposed that enables it... Read More about On the performance of the hybridisation between migrating birds optimisation variants and differential evolution for large scale continuous problems.

Impact of selection methods on the diversity of many-objective Pareto set approximations (2017)
Presentation / Conference Contribution
Martí, L., Segredo, E., Sánchez-Pi, N., & Hart, E. (2017, September). Impact of selection methods on the diversity of many-objective Pareto set approximations. Presented at 21st International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, Marseille, France

Selection methods are a key component of all multi-objective and, consequently, many-objective optimisation evolutionary algorithms. They must perform two main tasks simultaneously. First of all, they must select individuals that are as close as poss... Read More about Impact of selection methods on the diversity of many-objective Pareto set approximations.

The importance of the individual encoding in memetic algorithms with diversity control applied to large Sudoku puzzles (2017)
Presentation / Conference Contribution
Segura, C., Segredo, E., & Miranda, G. (2017, June). The importance of the individual encoding in memetic algorithms with diversity control applied to large Sudoku puzzles. Presented at 2017 IEEE Congress on Evolutionary Computation (CEC)

In recent years, several memetic algorithms with explicit mechanisms to delay convergence have shown great promise when solving 9x9 Sudoku puzzles. This paper analyzes and extends state-of-the-art schemes for dealing with Sudoku puzzles of larger dim... Read More about The importance of the individual encoding in memetic algorithms with diversity control applied to large Sudoku puzzles.

On the comparison of initialisation strategies in differential evolution for large scale optimisation (2017)
Journal Article
Segredo, E., Paechter, B., Segura, C., & González-Vila, C. I. (2018). On the comparison of initialisation strategies in differential evolution for large scale optimisation. Optimization Letters, 12(1), 221-234. https://doi.org/10.1007/s11590-017-1107-z

Differential Evolution (DE) has shown to be a promising global opimisation solver for continuous problems, even for those with a large dimensionality. Different previous works have studied the effects that a population initialisation strategy has on... Read More about On the comparison of initialisation strategies in differential evolution for large scale optimisation.

Hybridisation of Evolutionary Algorithms through hyper-heuristics for global continuous optimisation (2016)
Presentation / Conference Contribution
Segredo, E., Lalla-Ruiz, E., Hart, E., Paechter, B., & Voß, S. (2016, May). Hybridisation of Evolutionary Algorithms through hyper-heuristics for global continuous optimisation. Presented at Learning and Intelligent OptimizatioN Conference LION 10, Ischia Island (Napoli), Italy

Choosing the correct algorithm to solve a problem still remains an issue 40 years after the Algorithm Selection Problem was first posed. Here we propose a hyper-heuristic which can apply one of two meta-heuristics at the current stage of the search.... Read More about Hybridisation of Evolutionary Algorithms through hyper-heuristics for global continuous optimisation.

Hybrid parameter control approach applied to a diversity-based multi-objective Memetic Algorithm for frequency assignment problems (2016)
Presentation / Conference Contribution
Segredo, E., Paechter, B., Hart, E., & Gonz´alez-Vila, C. I. (2016, July). Hybrid parameter control approach applied to a diversity-based multi-objective Memetic Algorithm for frequency assignment problems. Presented at IEEE World Congress on Computational Intelligence

In order to address the difficult issue of parameter setting within a diversity-based Multi-objective Evolutionary Algorithm (MOEA), we recently proposed a hybrid control scheme based on both Fuzzy Logic Controllers (FLCs) and Hyper-heuristics (HHs).... Read More about Hybrid parameter control approach applied to a diversity-based multi-objective Memetic Algorithm for frequency assignment problems.

Analysing the performance of migrating birds optimisation approaches for large scale continuous problems (2016)
Presentation / Conference Contribution
Lalla-Ruiz, E., Segredo, E., Voss, S., Hart, E., & Paechter, B. (2016, September). Analysing the performance of migrating birds optimisation approaches for large scale continuous problems. Presented at 14th International Conference on Parallel Problem Solving from Nature (PPSN 2016)

We present novel algorithmic schemes for dealing with large scale continuous problems. They are based on the recently proposed population-based meta-heuristics Migrating Birds Optimisation (mbo) and Multi-leader Migrating Birds Optimisation (mmbo), t... Read More about Analysing the performance of migrating birds optimisation approaches for large scale continuous problems.

A fuzzy logic controller applied to a diversity-based multi-objective evolutionary algorithm for single-objective optimisation (2014)
Journal Article
Segredo, E., Segura, C., León, C., & Hart, E. (2015). A fuzzy logic controller applied to a diversity-based multi-objective evolutionary algorithm for single-objective optimisation. Soft Computing, 19(10), 2927-2945. https://doi.org/10.1007/s00500-014-1454-y

In recent years, Multi-Objective Evolutionary Algorithms (MOEAS) that consider diversity as an objective have been used to tackle single-objective optimisation prob- lems. The ability to deal with premature convergence has been greatly improved with... Read More about A fuzzy logic controller applied to a diversity-based multi-objective evolutionary algorithm for single-objective optimisation.