Skip to main content

Research Repository

Advanced Search

Outputs (103)

Improved Double Deep Q Network-Based Task Scheduling Algorithm in Edge Computing for Makespan Optimization (2024)
Journal Article
Zeng, L., Liu, Q., Shen, S., & Liu, X. (2024). Improved Double Deep Q Network-Based Task Scheduling Algorithm in Edge Computing for Makespan Optimization. Tsinghua Science and Technology, 29(3), 806 - 817. https://doi.org/10.26599/TST.2023.9010058

Edge computing nodes undertake more and more tasks as business density grows. How to efficiently allocate large-scale and dynamic workloads to edge computing resources has become a critical challenge. An edge task scheduling approach based on an impr... Read More about Improved Double Deep Q Network-Based Task Scheduling Algorithm in Edge Computing for Makespan Optimization.

PFL-LDG: Privacy-preserving Federated Learning via Lightweight Device Grouping (2023)
Presentation / Conference Contribution
Wang, Z., Liu, Q., & Liu, X. (2023, August). PFL-LDG: Privacy-preserving Federated Learning via Lightweight Device Grouping. Presented at The 9th IEEE International Conference on Privacy Computing and Data Security (PCDS 2023) as Part of the IEEE Smart World Congress 2023, Portsmouth, UK

The rapid growth of private data from distributed edge networks, driven by the proliferation of IoT sensors, wearable devices, and smartphones, offers significant opportunities for AI applications. However, traditional distributed machine learning me... Read More about PFL-LDG: Privacy-preserving Federated Learning via Lightweight Device Grouping.

Deep Vision in Analysis and Recognition of Radar Data: Achievements, Advancements, and Challenges (2023)
Journal Article
Liu, Q., Yang, Z., Ji, R., Zhang, Y., Bilal, M., Liu, X., Vimal, S., & Xu, X. (2023). Deep Vision in Analysis and Recognition of Radar Data: Achievements, Advancements, and Challenges. IEEE Systems, Man, and Cybernetics Magazine, 9(4), 4-12. https://doi.org/10.1109/msmc.2022.3216943

Radars are widely used to obtain echo information for effective prediction, such as precipitation nowcasting. In this article, recent relevant scientific investigation and practical efforts using deep learning (DL) models for weather radar data analy... Read More about Deep Vision in Analysis and Recognition of Radar Data: Achievements, Advancements, and Challenges.

Towards Improving Accessibility of Web Auditing with Google Lighthouse (2023)
Presentation / Conference Contribution
McGill, T., Bamgboye, O., Liu, X., & Kalutharage, C. S. (2023, June). Towards Improving Accessibility of Web Auditing with Google Lighthouse. Presented at The 47th IEEE Annual Conference on Computers, Software, and Applications (COMPSAC), Turin, Italy

Google Lighthouse is a tool made by Google for auditing web pages performance, accessibility, SEO, and best practices with the intention of improving the quality of the websites. This allows software developers to understand areas of improvement with... Read More about Towards Improving Accessibility of Web Auditing with Google Lighthouse.

A cloud-based Bi-directional LSTM approach to grid-connected solar PV energy forecasting for multi-energy systems (2023)
Journal Article
Liu, Q., Darteh, O. F., Bilal, M., Huang, X., Attique, M., Liu, X., & Acakpovi, A. (2023). A cloud-based Bi-directional LSTM approach to grid-connected solar PV energy forecasting for multi-energy systems. Sustainable Computing, 40, Article 100892. https://doi.org/10.1016/j.suscom.2023.100892

The drive for smarter, greener, and more livable cities has led to research towards more effective solar energy forecasting techniques and their integration into traditional power systems. However, the availability of real-time data, data storage, an... Read More about A cloud-based Bi-directional LSTM approach to grid-connected solar PV energy forecasting for multi-energy systems.

A Multi-Swarm PSO Approach to Large-Scale Task Scheduling in a Sustainable Supply Chain Datacenter (2023)
Journal Article
Liu, Q., Zeng, L., Bilal, M., Song, H., Liu, X., Zhang, Y., & Cao, X. (2023). A Multi-Swarm PSO Approach to Large-Scale Task Scheduling in a Sustainable Supply Chain Datacenter. IEEE Transactions on Green Communications and Networking, 7(4), 1667 - 1677. https://doi.org/10.1109/tgcn.2023.3283509

Supply chain management is a vital part of ensuring service quality and production efficiency in industrial applications. With the development of cloud computing and data intelligence in modern industries, datacenters have become an important basic s... Read More about A Multi-Swarm PSO Approach to Large-Scale Task Scheduling in a Sustainable Supply Chain Datacenter.

CFNet: An Eigenvalue Preserved Approach to Multiscale Building Segmentation in High-Resolution Remote Sensing Images (2023)
Journal Article
Liu, Q., Li, Y., Bilal, M., Liu, X., Zhang, Y., Wang, H., & Xu, X. (2023). CFNet: An Eigenvalue Preserved Approach to Multiscale Building Segmentation in High-Resolution Remote Sensing Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 2481-2491. https://doi.org/10.1109/jstars.2023.3244336

In recent years, AI and Deep Learning (DL) methods have been widely used for object classification, recognition, and segmentation of high-resolution multispectral remote sensing images. These DL-based solutions perform better compare to traditional s... Read More about CFNet: An Eigenvalue Preserved Approach to Multiscale Building Segmentation in High-Resolution Remote Sensing Images.

Explainable AI-Based DDOS Attack Identification Method for IoT Networks (2023)
Journal Article
Kalutharage, C. S., Liu, X., Chrysoulas, C., Pitropakis, N., & Papadopoulos, P. (2023). Explainable AI-Based DDOS Attack Identification Method for IoT Networks. Computers, 12(2), Article 32. https://doi.org/10.3390/computers12020032

The modern digitized world is mainly dependent on online services. The availability of online systems continues to be seriously challenged by distributed denial of service (DDoS) attacks. The challenge in mitigating attacks is not limited to identify... Read More about Explainable AI-Based DDOS Attack Identification Method for IoT Networks.

High Resolution Remote Sensing Water Image Segmentation Based on Dual Branch Network (2022)
Presentation / Conference Contribution
Zhang, Z., Li, Y., Liu, Q., & Liu, X. (2022, September). High Resolution Remote Sensing Water Image Segmentation Based on Dual Branch Network. Presented at 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Falerna, Italy

A basic stage of hydrological research is to automatically extract water body information from high-resolution remote sensing images. Various methods based on deep learning convolutional neural networks have been proposed in recent studies to achieve... Read More about High Resolution Remote Sensing Water Image Segmentation Based on Dual Branch Network.

Dense-FCN: A Deep Learning Approach for Weather Radar Beam Blockage Correction (2022)
Presentation / Conference Contribution
Sun, J., Wu, H., Liu, Q., Liu, X., & Ma, J. (2022, September). Dense-FCN: A Deep Learning Approach for Weather Radar Beam Blockage Correction. Presented at 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Falerna, Italy

The weather radar will receive a lot of non-meteorological echo information during the body scan process, such as: object echoes, co-wave interference echoes, airplanes, flocks of birds, etc. These non-meteorological echoes will cause pollution to no... Read More about Dense-FCN: A Deep Learning Approach for Weather Radar Beam Blockage Correction.

Emerging Simulation Frameworks for Analyzing Smart Grid Cyberattack: A Literature Review (2022)
Presentation / Conference Contribution
Darteh, O. F., Liu, Q., Liu, X., Bah, I., Nakoty, F. M., & Acakpovi, A. (2022, September). Emerging Simulation Frameworks for Analyzing Smart Grid Cyberattack: A Literature Review. Presented at 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Falerna, Italy

The transition of the conventional power grid into the Smart Grid (SG), a widely distributed energy delivery network characterized by a two-way flow of electricity and information, is key for energy sector stakeholders. Despite the SG’s clear improve... Read More about Emerging Simulation Frameworks for Analyzing Smart Grid Cyberattack: A Literature Review.

An Input Sampling Scheme to Radar Echo Extrapolation For RNN-Based Models (2022)
Presentation / Conference Contribution
Wang, Y., Yang, Z., Liu, Q., & Liu, X. (2022, September). An Input Sampling Scheme to Radar Echo Extrapolation For RNN-Based Models. Presented at 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Falerna, Italy

Short-term heavy rainfall can have a significant impact on people's production, life and travel. Numerical Weather Prediction (NWP) is complex. It can predict weather conditions for the next week or even two weeks, but cannot predict the weather in t... Read More about An Input Sampling Scheme to Radar Echo Extrapolation For RNN-Based Models.

Explainable AI and Deep Autoencoders Based Security Framework for IoT Network Attack Certainty (Extended Abstract) (2022)
Presentation / Conference Contribution
Kalutharage, C. S., Liu, X., & Chrysoulas, C. (2022, September). Explainable AI and Deep Autoencoders Based Security Framework for IoT Network Attack Certainty (Extended Abstract). Presented at 27th European Symposium on Research in Computer Security (ESORICS) 2022, Copenhagen, Denmark

Over the past few decades, Machine Learning (ML)-based intrusion detection systems (IDS) have become increasingly popular and continue to show remarkable performance in detecting attacks. However, the lack of transparency in their decision-making pro... Read More about Explainable AI and Deep Autoencoders Based Security Framework for IoT Network Attack Certainty (Extended Abstract).

A self-attention integrated spatiotemporal LSTM approach to edge-radar echo extrapolation in the Internet of Radars (2022)
Journal Article
Yang, Z., Wu, H., Liu, Q., Liu, X., Zhang, Y., & Cao, X. (2023). A self-attention integrated spatiotemporal LSTM approach to edge-radar echo extrapolation in the Internet of Radars. ISA Transactions, 132, 155-166. https://doi.org/10.1016/j.isatra.2022.06.046

In recent years, the number of weather-related disasters significantly increases across the world. As a typical example, short-range extreme precipitation can cause severe flooding and other secondary disasters, which therefore requires accurate pred... Read More about A self-attention integrated spatiotemporal LSTM approach to edge-radar echo extrapolation in the Internet of Radars.

CEMA-LSTM: Enhancing Contextual Feature Correlation for Radar Extrapolation Using Fine-Grained Echo Datasets (2022)
Journal Article
Yang, Z., Liu, Q., Wu, H., Liu, X., & Zhang, Y. (2023). CEMA-LSTM: Enhancing Contextual Feature Correlation for Radar Extrapolation Using Fine-Grained Echo Datasets. Computer Modeling in Engineering and Sciences, 135(1), 45-64. https://doi.org/10.32604/cmes.2022.022045

Accurate precipitation nowcasting can provide great convenience to the public so they can conduct corresponding arrangements in advance to deal with the possible impact of upcoming heavy rain. Recent relevant research activities have shown their conc... Read More about CEMA-LSTM: Enhancing Contextual Feature Correlation for Radar Extrapolation Using Fine-Grained Echo Datasets.

Near-Data Prediction Based Speculative Optimization in a Distribution Environment (2022)
Journal Article
Liu, Q., Wu, X., Liu, X., Zhang, Y., & Hu, Y. (2022). Near-Data Prediction Based Speculative Optimization in a Distribution Environment. Mobile Networks and Applications, 27(6), 2339-2347. https://doi.org/10.1007/s11036-021-01793-7

Hadoop is an open source from Apache with a distributed file system and MapReduce distributed computing framework. The current Apache 2.0 license agreement supports on-demand payment by consumers for cloud platform services, helping users leverage th... Read More about Near-Data Prediction Based Speculative Optimization in a Distribution Environment.

Intelligent Question Answering System Based on Knowledge Graph (2022)
Presentation / Conference Contribution
Feng, X., Liu, Q., & Liu, X. (2021, December). Intelligent Question Answering System Based on Knowledge Graph. Presented at IEEE SmartCity-2021, Hainan, China

In order to build a smart city and pursue more efficient city management, various industries have introduced intelligent question answering into process management. The intelligent question answering system based on the knowledge graph is dedicated t... Read More about Intelligent Question Answering System Based on Knowledge Graph.

An Intelligent Method for Upper Limb Posture Recognition Based on Limited MEMS Data (2022)
Presentation / Conference Contribution
Wu, Z., Wu, X., Liu, Q., & Liu, X. (2021, October). An Intelligent Method for Upper Limb Posture Recognition Based on Limited MEMS Data. Presented at The 6th IEEE Cyber Science and Technology Congress (2021) (CyberSciTech 2021), AB, Canada [Online]

There are more than 10 million new stroke cases worldwide every year, and stroke has become one of the main causes of death and disability. In recent years, with the rapid development of computer science and technology, through the combination of Int... Read More about An Intelligent Method for Upper Limb Posture Recognition Based on Limited MEMS Data.

Improving Domestic NILM Using An Attention- Enabled Seq2Point Learning Approach (2022)
Presentation / Conference Contribution
Zhang, J., Sun, J., Gan, J., Liu, Q., & Liu, X. (2021, October). Improving Domestic NILM Using An Attention- Enabled Seq2Point Learning Approach. Presented at The 6th IEEE Cyber Science and Technology Congress (2021) (CyberSciTech 2021), AB, Canada [Online]

The past decade have seen a growth in Internet technology, the overlap of cyberspace and social space provides great convenience for people's life. The in-depth study of non-intrusive load management (NILM) promotes the development of multi-integrati... Read More about Improving Domestic NILM Using An Attention- Enabled Seq2Point Learning Approach.