Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Cluster-based oversampling with area extraction from representative points for class imbalance learning (2024)
Journal Article
Farou, Z., Wang, Y., & Horváth, T. (2024). Cluster-based oversampling with area extraction from representative points for class imbalance learning. Intelligent Systems with Applications, 22, Article 200357. https://doi.org/10.1016/j.iswa.2024.200357

Class imbalance learning is challenging in various domains where training datasets exhibit disproportionate samples in a specific class. Resampling methods have been used to adjust the class distribution, but they often have limitations for small dis... Read More about Cluster-based oversampling with area extraction from representative points for class imbalance learning.

Better trees: an empirical study on hyperparameter tuning of classification decision tree induction algorithms (2024)
Journal Article
Mantovani, R. G., Horváth, T., Rossi, A. L. D., Cerri, R., Barbon Junior, S., Vanschoren, J., & de Carvalho, A. C. P. L. F. (2024). Better trees: an empirical study on hyperparameter tuning of classification decision tree induction algorithms. Data Mining and Knowledge Discovery, 38, 1364–1416. https://doi.org/10.1007/s10618-024-01002-5

Machine learning algorithms often contain many hyperparameters whose values affect the predictive performance of the induced models in intricate ways. Due to the high number of possibilities for these hyperparameter configurations and their complex i... Read More about Better trees: an empirical study on hyperparameter tuning of classification decision tree induction algorithms.