A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic Non-Epileptic Seizures from Healthy Controls
(2021)
Journal Article
Varone, G., Boulila, W., Lo Giudice, M., Benjdira, B., Mammone, N., Ieracitano, C., Dashtipour, K., Neri, S., Gasparini, S., Morabito, F. C., Hussain, A., & Aguglia, U. (2022). A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic Non-Epileptic Seizures from Healthy Controls. Sensors, 22(1), Article 129. https://doi.org/10.3390/s22010129
Until now, clinicians are not able to evaluate the Psychogenic Non-Epileptic Seizures (PNES) from the rest-electroencephalography (EEG) readout. No EEG marker can help differentiate PNES cases from healthy subjects. In this paper, we have investigate... Read More about A Machine Learning Approach Involving Functional Connectivity Features to Classify Rest-EEG Psychogenic Non-Epileptic Seizures from Healthy Controls.