Skip to main content

Research Repository

Advanced Search

MuscleMap: An Open-Source, Community-Supported Consortium for Whole-Body Quantitative MRI of Muscle

McKay, Marnee J.; Weber, Kenneth A.; Wesselink, Evert O.; Smith, Zachary A.; Abbott, Rebecca; Anderson, David B.; Ashton-James, Claire E.; Atyeo, John; Beach, Aaron J.; Burns, Joshua; Clarke, Stephen; Collins, Natalie J.; Coppieters, Michel W.; Cornwall, Jon; Crawford, Rebecca J.; De Martino, Enrico; Dunn, Adam G.; Eyles, Jillian P.; Feng, Henry J.; Fortin, Maryse; Franettovich Smith, Melinda M.; Galloway, Graham; Gandomkar, Ziba; Glastras, Sarah; Henderson, Luke A.; Hides, Julie A.; Hiller, Claire E.; Hilmer, Sarah N.; Hoggarth, Mark A.; Kim, Brian; Lal, Navneet; LaPorta, Laura; Magnussen, John S.; Maloney, Sarah; March, Lyn; Nackley, Andrea G.; O’Leary, Shaun P.; Peolsson, Anneli; Perraton, Zuzana; Pool-Goudzwaard, Annelies L.; Schnitzler, Margaret; Seitz, Amee L.; Semciw, Adam I.; Sheard, Philip W.; Smith, Andrew C.; Snodgrass, Suzanne J.; Sullivan, Justin; Tran, Vienna; Valentin, Stephanie; Walton, David M.; Wishart, Laurelie R.; Elliott, James M.

Authors

Marnee J. McKay

Kenneth A. Weber

Evert O. Wesselink

Zachary A. Smith

Rebecca Abbott

David B. Anderson

Claire E. Ashton-James

John Atyeo

Aaron J. Beach

Joshua Burns

Stephen Clarke

Natalie J. Collins

Michel W. Coppieters

Jon Cornwall

Rebecca J. Crawford

Enrico De Martino

Adam G. Dunn

Jillian P. Eyles

Henry J. Feng

Maryse Fortin

Melinda M. Franettovich Smith

Graham Galloway

Ziba Gandomkar

Sarah Glastras

Luke A. Henderson

Julie A. Hides

Claire E. Hiller

Sarah N. Hilmer

Mark A. Hoggarth

Brian Kim

Navneet Lal

Laura LaPorta

John S. Magnussen

Sarah Maloney

Lyn March

Andrea G. Nackley

Shaun P. O’Leary

Anneli Peolsson

Zuzana Perraton

Annelies L. Pool-Goudzwaard

Margaret Schnitzler

Amee L. Seitz

Adam I. Semciw

Philip W. Sheard

Andrew C. Smith

Suzanne J. Snodgrass

Justin Sullivan

Vienna Tran

David M. Walton

Laurelie R. Wishart

James M. Elliott



Abstract

Disorders affecting the neurological and musculoskeletal systems represent international health priorities. A significant impediment to progress in trials of new therapies is the absence of responsive, objective, and valid outcome measures sensitive to early disease changes. A key finding in individuals with neuromuscular and musculoskeletal disorders is the compositional changes to muscles, evinced by the expression of fatty infiltrates. Quantification of skeletal muscle composition by MRI has emerged as a sensitive marker for the severity of these disorders; however, little is known about the composition of healthy muscles across the lifespan. Knowledge of what is ‘typical’ age-related muscle composition is essential to accurately identify and evaluate what is ‘atypical’. This innovative project, known as the MuscleMap, will achieve the first important steps towards establishing a world-first, normative reference MRI dataset of skeletal muscle composition with the potential to provide valuable insights into various diseases and disorders, ultimately improving patient care and advancing research in the field.

Citation

McKay, M. J., Weber, K. A., Wesselink, E. O., Smith, Z. A., Abbott, R., Anderson, D. B., Ashton-James, C. E., Atyeo, J., Beach, A. J., Burns, J., Clarke, S., Collins, N. J., Coppieters, M. W., Cornwall, J., Crawford, R. J., De Martino, E., Dunn, A. G., Eyles, J. P., Feng, H. J., Fortin, M., …Elliott, J. M. (2024). MuscleMap: An Open-Source, Community-Supported Consortium for Whole-Body Quantitative MRI of Muscle. Journal of Imaging, 10(11), Article 262. https://doi.org/10.3390/jimaging10110262

Journal Article Type Review
Acceptance Date Oct 18, 2024
Online Publication Date Oct 22, 2024
Publication Date 2024-11
Deposit Date Oct 28, 2024
Publicly Available Date Oct 28, 2024
Journal Journal of Imaging
Electronic ISSN 2313-433X
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 10
Issue 11
Article Number 262
DOI https://doi.org/10.3390/jimaging10110262
Keywords artificial intelligence; neural networks; machine learning; MR imaging; muscle fat infiltration; public datasets; normative reference data

Files





You might also like



Downloadable Citations