Skip to main content

Research Repository

Advanced Search

Coupled thermo-electrical dispatch strategy with AI forecasting for optimal sizing of grid-connected hybrid renewable energy systems

Kahwash, F.; Barakat, B.; Maheri, A.

Authors

B. Barakat

A. Maheri



Abstract

In multi-energy systems the full utilisation of the generated energy is a challenge. Integrating heat and electricity supply at the system level design could provide an opportunity to address this challenge. In this paper we introduce and examine two coupled thermal-electrical dispatch strategies for grid-connected hybrid multi-energy systems supplying electrical and thermal demand loads. The dispatch strategy employs forecasting of energy resources and demand loads to prioritise supplying the thermal load in times of renewable surplus. Four forecasting algorithms, namely, baseline forecast, Facebook Prophet (FBP), Neural Prophet (NP), and Long Short-Term Memory model (LSTM) are implemented and used to generate annual forecast data for solar irradiance, wind speed, and thermal and electrical demand loads. To integrate forecast data within the dispatch strategy, new parameters are proposed to quantify the expected available energy within the forecast time horizon. A building complex for the Department of Education in the UK is used for conducting a system design case study. A genetic algorithm-based multi-objective optimisation with the levelised costs of electricity and heat as two objectives is conducted. The results show that the proposed dispatch algorithm produces systems with reduced levelised costs compared to the base case of using utility gas and electricity. Forecasting is particularly useful in reducing cost of heat, as it can prioritise supplying the thermal load in times of renewable surplus. LSTM proved to be the most accurate forecasting algorithm for this case, where the data has strong seasonality and trends. The main contribution of this work is to propose and demonstrate the effectiveness of tightly coupling thermo-electrical dispatch algorithms of HRES from the design stage, and how to effectively integrate forecast data within such algorithms.

Citation

Kahwash, F., Barakat, B., & Maheri, A. (2023). Coupled thermo-electrical dispatch strategy with AI forecasting for optimal sizing of grid-connected hybrid renewable energy systems. Energy Conversion and Management, 293, Article 117460. https://doi.org/10.1016/j.enconman.2023.117460

Journal Article Type Article
Acceptance Date Jul 24, 2023
Online Publication Date Aug 11, 2023
Publication Date 2023-10
Deposit Date Aug 14, 2023
Publicly Available Date Aug 14, 2023
Journal Energy Conversion and Management
Print ISSN 0196-8904
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 293
Article Number 117460
DOI https://doi.org/10.1016/j.enconman.2023.117460
Keywords Grid-connected, Hybrid renewable energy system, Clean heat, Supervised machine learning, Time series forecasting, Multi-energy systems

Files





You might also like



Downloadable Citations