Geoff Nitschke
Evolving Herding Behaviour Diversity in Robot Swarms
Nitschke, Geoff; Hallauer, Scott; Hart, Emma
Abstract
Behavioural diversity has been demonstrated as beneficial in biological social systems, such as insect colonies and human societies, as well as artificial systems such as large-scale software and swarm-robotics systems. Evolutionary swarm robotics is a popular experimental platform for demonstrating the emergence of various social phenomena and collective behaviour, including behavioural diversity and specialization. However, from an automated design perspective, the evolutionary conditions necessary to synthesize optimal collective behaviours (swarm-robotic controllers) that function across increasingly complex environments (difficult tasks), remains unclear. Thus, we introduce a comparative study of behavioural-diversity maintenance methods (swarm-controller extension of the MAP-Elites algorithm) versus those without behavioural diversity mechanisms (Steady-State Genetic Algorithm), as a means to evolve suitable degrees of behavioural diversity over increasingly difficult collective behaviour (sheep-dog herding) tasks. In support of previous work, experiment results demonstrate that behavioural diversity can be generated without specific speciation mechanisms or geographical isolation in the task environment, although the direct evolution of a functionally (behaviorally) diverse swarm does not yield high task performance.
Citation
Nitschke, G., Hallauer, S., & Hart, E. (2023, July). Evolving Herding Behaviour Diversity in Robot Swarms. Presented at Proceedings of the Companion Conference on Genetic and Evolutionary Computation, Lisbon, Portugal
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | Proceedings of the Companion Conference on Genetic and Evolutionary Computation |
Start Date | Jul 15, 2023 |
End Date | Jul 19, 2023 |
Online Publication Date | Jul 24, 2023 |
Publication Date | 2023-07 |
Deposit Date | Aug 1, 2023 |
Publisher | Association for Computing Machinery (ACM) |
Pages | 95-98 |
Book Title | GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation |
ISBN | 979-8-4007-0120-7 |
DOI | https://doi.org/10.1145/3583133.3590528 |
Public URL | http://researchrepository.napier.ac.uk/Output/3156092 |
You might also like
XAI for Algorithm Configuration and Selection
(2025)
Book Chapter
Beyond the Hype: Benchmarking LLM-Evolved Heuristics for Bin Packing
(2025)
Presentation / Conference Contribution
Algorithm Selection with Probing Trajectories: Benchmarking the Choice of Classifier Model
(2025)
Presentation / Conference Contribution
Stalling in Space: Attractor Analysis for any Algorithm
(2025)
Presentation / Conference Contribution
Into the Black Box: Mining Variable Importance with XAI
(2025)
Presentation / Conference Contribution
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search