Skip to main content

Research Repository

Advanced Search

Counterfactual Explanation and Causal Inference In Service of Robustness in Robot Control

Smith, Simon C.; Ramamoorthy, Subramanian

Authors

Simon C. Smith

Subramanian Ramamoorthy



Abstract

We propose an architecture for training generative models of counterfactual conditionals of the form, `can we modify event A to cause B instead of C?', motivated by applications in robot control. Using an `adversarial training' paradigm, an image-based deep neural network model is trained to produce small and realistic modifications to an original image in order to cause user-defined effects. These modifications can be used in the design process of image-based robust control - to determine the ability of the controller to return to a working regime by modifications in the input space, rather than by adaptation. In contrast to conventional control design approaches, where robustness is quantified in terms of the ability to reject noise, we explore the space of counterfactuals that might cause a certain requirement to be violated, thus proposing an alternative model that might be more expressive in certain robotics applications. So, we propose the generation of counterfactuals as an approach to explanation of black-box models and the envisioning of potential movement paths in autonomous robotic control. Firstly, we demonstrate this approach in a set of classification tasks, using the well known MNIST and CelebFaces Attributes datasets. Then, addressing multi-dimensional regression, we demonstrate our approach in a reaching task with a physical robot, and in a navigation task with a robot in a digital twin simulation.

Citation

Smith, S. C., & Ramamoorthy, S. (2020, October). Counterfactual Explanation and Causal Inference In Service of Robustness in Robot Control. Presented at 10th Joint IEEE International Conference on Development and Learning and Epigenetic Robotics 2020 - Virtual conference, Chile, Valparaiso, Chile

Presentation Conference Type Conference Paper (published)
Conference Name 10th Joint IEEE International Conference on Development and Learning and Epigenetic Robotics 2020 - Virtual conference, Chile
Start Date Oct 26, 2020
End Date Oct 30, 2020
Online Publication Date Dec 14, 2020
Publication Date 2020
Deposit Date Jul 11, 2023
Publisher Institute of Electrical and Electronics Engineers
Series ISSN 2161-9484
Book Title 2020 Joint IEEE 10th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)
DOI https://doi.org/10.1109/icdl-epirob48136.2020.9278061
Keywords counterfactual conditionals, causal inference, model explainability, state envisioning, controller robustness