Shubhranshu Bhandari
Enlightening the temperature coefficient of triple mesoscopic CH3NH3PbI3−xClx/NiO and double mesoscopic CsFAMAPbI3−xBrx/CuSCN carbon perovskite solar cells
Bhandari, Shubhranshu; Mallick, Tapas Kumar; Sundaram, Senthilarasu
Abstract
Temperature is one of the most crucial outdoor variables that influence the photovoltaic performance and stability of carbon perovskite solar cells (CPSCs), although not many reports are there on temperature-dependent CPSCs performance based on various mesoscopic structures. This study demonstrates the temperature coefficient (T C) of carbon-based triple and double mesoscopic devices having MAPICL [MAPbI3−x Cl x ] and CSFAMA [Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3] to understand the performance compatibility of different CPSC configurations despite the thermal treatment (MA = methylammonium, FA = formamidinium). While treating a single device in the range of 5 °C–65 °C, MAPICL-based CPSC maintained a power conversion efficiency (PCE) of ∼9%–11.7%. In contrast, CSFAMA-based double mesoscopic devices showed a PCE variation of ∼14%–16% in the same temperature window. The interesting fact of this analysis is that the average T C values for MAPICL and CSFAMA are in the order of 10−4, implying better retention of performance for both mesoscopic devices despite thermal stress. A photoluminescence analysis has been done to understand the temperature-dependent charge transfer properties between the perovskite and transport layer. To the best of our knowledge, this analysis, for the first time, provides insight into the temperature coefficient of different CPSC mesoscopic structures to promote suitable future development.
Citation
Bhandari, S., Mallick, T. K., & Sundaram, S. (2023). Enlightening the temperature coefficient of triple mesoscopic CH3NH3PbI3−xClx/NiO and double mesoscopic CsFAMAPbI3−xBrx/CuSCN carbon perovskite solar cells. JPhs Energy, 5(2), Article 025006. https://doi.org/10.1088/2515-7655/acc3c2
Journal Article Type | Article |
---|---|
Acceptance Date | Mar 13, 2023 |
Online Publication Date | Mar 23, 2023 |
Publication Date | Apr 1, 2023 |
Deposit Date | Mar 31, 2023 |
Publicly Available Date | Mar 31, 2023 |
Journal | Journal of Physics: Energy |
Electronic ISSN | 2515-7655 |
Publisher | IOP Publishing |
Peer Reviewed | Peer Reviewed |
Volume | 5 |
Issue | 2 |
Article Number | 025006 |
DOI | https://doi.org/10.1088/2515-7655/acc3c2 |
Keywords | Solar energy conversion, temperature coefficient, double mesoscopic, triple mesoscopic, mixed halide, triple cation |
Files
Enlightening the temperature coefficient of triple mesoscopic CH3NH3PbI3−xClx/NiO and double mesoscopic CsFAMAPbI3−xBrx/CuSCN carbon perovskite solar cells
(2.4 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Copyright Statement
Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license.
You might also like
Evaluation of solar factor using spectral analysis for CdTe photovoltaic glazing
(2018)
Journal Article
Thermal performance of semitransparent CdTe BIPV window at temperate climate
(2019)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search