Josiane Mothe
Defining an Optimal Configuration Set for Selective Search Strategy - A Risk-Sensitive Approach
Mothe, Josiane; Ullah, Md Zia
Abstract
A search engine generally applies a single search strategy to any user query. The search combines many component processes (e.g., indexing, query expansion, search-weighting model, document ranking) and their hyperparameters, whose values are optimized based on past queries and then applied to all future queries. Even an optimized system may perform poorly on some queries, however, whereas another system might perform better on those queries. Selective search strategy aims to select the most appropriate combination of components and hyperparameter values to apply for each individual query. The number of candidate combinations is huge. To adapt best to any query, the ideal system would use many combinations. In the real world it would be too costly to use and maintain thousands of configurations. A trade-off must therefore be found between performance and cost. In this paper, we describe a risk-sensitive approach to optimize the set of configurations that should be included in a selective search strategy. This approach solves the problem of which and how many configurations to include in the system. We show that the use of 20 configurations results in significantly greater effectiveness than current approaches when tested on three TREC reference collections, by about 23% when compared to L2R documents and about 10% when compared to other selective approaches, and that it offers an appropriate trade-off between system complexity and system effectiveness.
Citation
Mothe, J., & Ullah, M. Z. (2021, November). Defining an Optimal Configuration Set for Selective Search Strategy - A Risk-Sensitive Approach. Presented at 30th ACM International Conference on Information & Knowledge Management, Queensland, Australia
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | 30th ACM International Conference on Information & Knowledge Management |
Start Date | Nov 1, 2021 |
End Date | Nov 5, 2021 |
Acceptance Date | Aug 9, 2021 |
Online Publication Date | Oct 30, 2021 |
Publication Date | 2021-10 |
Deposit Date | Mar 13, 2023 |
Publisher | Association for Computing Machinery (ACM) |
Pages | 1335-1345 |
Book Title | CIKM '21: Proceedings of the 30th ACM International Conference on Information & Knowledge Management |
ISBN | 9781450384469 |
DOI | https://doi.org/10.1145/3459637.3482422 |
You might also like
Instruments and Tools to Identify Radical Textual Content
(2022)
Journal Article
Query expansion for microblog retrieval focusing on an ensemble of features
(2019)
Journal Article
Selective Query Processing: A Risk-Sensitive Selection of Search Configurations
(2023)
Journal Article
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search