Skip to main content

Research Repository

Advanced Search

The Distribution of Nanoclay Particles at the Interface and Their Influence on the Microstructure Development and Rheological Properties of Reactively Processed Biodegradable Polylactide/Poly(butylene succinate) Blend Nanocomposites

Salehiyan, Reza; Ray, Suprakas S.; Bandyopadhyay, Jayita; Ojijo, Vincent


Reza Salehiyan

Suprakas S. Ray

Jayita Bandyopadhyay

Vincent Ojijo


The present work investigates the distribution of nanoclay particles at the interface and their influence on the microstructure development and non-linear rheological properties of reactively processed biodegradable polylactide/poly(butylene succinate) blend nanocomposites. Two types of organoclays, one is more hydrophilic (Cloisite®30B (C30B)) and another one is more hydrophobic (BetsopaTM (BET)), were used at different concentrations. Surface and transmission electron microscopies were respectively used to study the blend morphology evolution and for probing the dispersion and distribution of nanoclay platelets within the blend matrix and at the interface. The results suggested that both organoclays tended to localize at the interface between the blend’s two phases and encapsulate the dispersed poly(butylene succinate) phase, thereby suppressing coalescence. Using small angle X-ray scattering the probability of finding neighboring nanoclay particles in the blend matrix was calculated using the Generalized Indirect Fourier Transformation technique. Fourier Transform-rheology was utilized for quantifying nonlinear rheological responses and for correlating the extent of dispersion as well as the blend morphological evolution, for different organoclay loadings. The rheological responses were in good agreement with the X-ray scattering and electron microscopic results. It was revealed that C30B nanoparticles were more efficient in stabilizing the morphologies by evenly distributing at the interface. Nonlinear coefficient from FT-rheology was found to be more pronounced in case of blends filled with C30B, indicating better dispersion of C30B compare with BET which was in agreement with the SAXS results.

Journal Article Type Article
Acceptance Date Aug 7, 2017
Online Publication Date Aug 9, 2017
Publication Date 2017
Deposit Date Jan 30, 2023
Publicly Available Date Jan 31, 2023
Print ISSN 2073-4360
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 9
Issue 8
Article Number 350
Keywords reactively compatibilized clay-containing PLA/PBS blends; morphology development; non-linear rheological properties


The Distribution Of Nanoclay Particles At The Interface And Their Influence On The Microstructure Development And Rheological Properties Of Reactively Processed Biodegradable Polylactide/Poly(butylene Succinate) Blend Nanocomposites (9.8 Mb)

Publisher Licence URL

You might also like

Downloadable Citations