Xiaowei Gu
Multi-Objective Evolutionary Optimisation for Prototype-Based Fuzzy Classifiers
Gu, Xiaowei; Li, Miqing; Shen, Liang; Tang, Guolin; Ni, Qiang; Peng, Taoxin; Shen, Qiang
Authors
Abstract
Evolving intelligent systems (EISs), particularly, the zero-order ones have demonstrated strong performance on many real-world problems concerning data stream classification, while offering high model transparency and interpretability thanks to their prototype-based nature. Zero-order EISs typically learn prototypes by clustering streaming data online in a “one pass” manner for greater computation efficiency. However, such identified prototypes often lack optimality, resulting in less precise classification boundaries, thereby hindering the potential classification performance of the systems. To address this issue, a commonly adopted strategy is to minimise the training error of the models on historical training data or alternatively, to iteratively minimise the intra-cluster variance of the clusters obtained via online data partitioning. This recognises the fact that the ultimate classification performance of zero-order EISs is driven by the positions of prototypes in the data space. Yet, simply minimising the training error may potentially lead to overfitting, whilst minimising the intra-cluster variance does not necessarily ensure the optimised prototype-based models to attain improved classification outcomes. To achieve better classification performance whilst avoiding overfitting for zero-order EISs, this paper presents a novel multi-objective optimisation approach, enabling EISs to obtain optimal prototypes via involving these two disparate but complementary strategies simultaneously. Five decision-making schemes are introduced for selecting a suitable solution to deploy from the final non-dominated set of the resulting optimised models. Systematic experimental studies are carried out to demonstrate the effectiveness of the proposed optimisation approach in improving the classification performance of zero-order EISs.
Citation
Gu, X., Li, M., Shen, L., Tang, G., Ni, Q., Peng, T., & Shen, Q. (2023). Multi-Objective Evolutionary Optimisation for Prototype-Based Fuzzy Classifiers. IEEE Transactions on Fuzzy Systems, 31(5), 1703-1715. https://doi.org/10.1109/tfuzz.2022.3214241
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 10, 2022 |
Online Publication Date | Oct 13, 2022 |
Publication Date | May 3, 2023 |
Deposit Date | Oct 17, 2022 |
Publicly Available Date | Oct 17, 2022 |
Journal | IEEE Transactions on Fuzzy Systems |
Print ISSN | 1063-6706 |
Electronic ISSN | 1941-0034 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 31 |
Issue | 5 |
Pages | 1703-1715 |
DOI | https://doi.org/10.1109/tfuzz.2022.3214241 |
Keywords | Evolving intelligent system, fuzzy classifier, multi-objective optimisation, prototype, classification |
Public URL | http://researchrepository.napier.ac.uk/Output/2933071 |
Files
Multi-Objective Evolutionary Optimisation For Prototype-Based Fuzzy Classifiers (accepted version)
(681 Kb)
PDF
You might also like
A comparison of techniques for name matching
(2012)
Journal Article
A framework for data cleaning in data warehouses
(2008)
Journal Article
An evaluation of name matching techniques.
(2011)
Presentation / Conference Contribution
The VoIP intrusion detection through a LVQ-based neural network.
(2009)
Presentation / Conference Contribution
Combining dimensional analysis and heuristics for causal ordering.
(2006)
Book Chapter
Downloadable Citations
About Edinburgh Napier Research Repository
Administrator e-mail: repository@napier.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search