Junaid Rashid
An Augmented Artificial Intelligence Approach for Chronic Diseases Prediction
Rashid, Junaid; Batool, Saba; Kim, Jungeun; Wasif Nisar, Muhammad; Hussain, Amir; Juneja, Sapna; Kushwaha, Riti
Authors
Saba Batool
Jungeun Kim
Muhammad Wasif Nisar
Prof Amir Hussain A.Hussain@napier.ac.uk
Professor
Sapna Juneja
Riti Kushwaha
Abstract
Chronic diseases are increasing in prevalence and mortality worldwide. Early diagnosis has therefore become an important research area to enhance patient survival rates. Several research studies have reported classification approaches for specific disease prediction. In this paper, we propose a novel augmented artificial intelligence approach using an artificial neural network (ANN) with particle swarm optimization (PSO) to predict five prevalent chronic diseases including breast cancer, diabetes, heart attack, hepatitis, and kidney disease. Seven classification algorithms are compared to evaluate the proposed model's prediction performance. The ANN prediction model constructed with a PSO based feature extraction approach outperforms other state-of-the-art classification approaches when evaluated with accuracy. Our proposed approach gave the highest accuracy of 99.67%, with the PSO. However, the classification model's performance is found to depend on the attributes of data used for classification. Our results are compared with various chronic disease datasets and shown to outperform other benchmark approaches. In addition, our optimized ANN processing is shown to require less time compared to random forest (RF), deep learning and support vector machine (SVM) based methods. Our study could play a role for early diagnosis of chronic diseases in hospitals, including through development of online diagnosis systems.
Citation
Rashid, J., Batool, S., Kim, J., Wasif Nisar, M., Hussain, A., Juneja, S., & Kushwaha, R. (2022). An Augmented Artificial Intelligence Approach for Chronic Diseases Prediction. Frontiers in Public Health, 10, Article 860396. https://doi.org/10.3389/fpubh.2022.860396
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 22, 2022 |
Online Publication Date | Mar 31, 2022 |
Publication Date | 2022 |
Deposit Date | May 12, 2022 |
Publicly Available Date | May 12, 2022 |
Publisher | Frontiers Media |
Peer Reviewed | Peer Reviewed |
Volume | 10 |
Article Number | 860396 |
DOI | https://doi.org/10.3389/fpubh.2022.860396 |
Keywords | medical diagnosis, feature selection, chronic diseases, artificial neural network (ANN), prediction |
Public URL | http://researchrepository.napier.ac.uk/Output/2871579 |
Files
An Augmented Artificial Intelligence Approach For Chronic Diseases Prediction
(2.5 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
WikiDes: A Wikipedia-based dataset for generating short descriptions from paragraphs
(2022)
Journal Article
DPb-MOPSO: A Dynamic Pareto bi-level Multi-objective Particle Swarm Optimization Algorithm
(2022)
Journal Article